header image scientific

Bibliography

Our instruments are used by top reserchers world wide, including recent nobel prize winners, such as W.E. Moerner and S.W. Hell. Our bibliography is a collection of papers that mention explicitly PicoQuant or at least one of our product's name. Searching or browsing through the bibliography allows to find out which laboratories use PicoQuant devices and what type of applications have been reported so far.

The bibliography contains articles mentioning explicitly PicoQuant or at least one of our product's name (e.g. MicroTime). Most of the references can be found easily by full-text searches on the internet. However, some papers cite us only indirectly, sometimes not at all. Such publications are included only if the use of a PicoQuant product is known, for example, based on communication with the author(s). There are certainly many more articles reporting results obtained using PicoQuant devices. Unfortunately, such papers are often hidden for us. Please help completing this list.
Do you miss your publication? If yes, we will be happy to include it in our bibliography. Please send an e-mail to info@picoquant.com containing the appropriate citation. Thank you very much in advance for your kind co-operation.

more..


Searching for MicroTime 200

1293 results found.


Bi2S3‐Cu3BiS3 mixed phase interlayer for high‐performance Cu3BiS3‐photocathode for 2.33% unassisted solar water splitting efficiency

Moon S., Park J., Lee H., Yand J.W., Yun J., Park Y.S., Lee J., Im H., Jang H.W., Yang W., Moon J.
Advanced Science, Vol.010, 2206286 (2023)

Reference to: MicroTime 200, PicoHarp 300


Hollow, ph-sensitive microgels as nanocontainers for the encapsulation of proteins

Wypysek S.K., Centeno S.P., Gronemann T., Wöll D., Richtering W.
Macromolecular Bioscience, early view, 2200456 (2023)

Reference to: MicroTime 200, FLIMBee, HydraHarp 400, SPADs, SymPhoTime


Micro-nonuniformity of the luminescence parameters in compositionally disordered GYAGG: Ce ceramics

Dubov V., Gogoleva M., Saifutyarov R., Kucherov O., Korzhik M., Kuznetsova D., Komendo I., Sokolov P.
Photonics, Vol.010, 54 (2023)

Reference to: MicroTime 200
Related to: FLIM


Time-resolved microscopy made easy: new confocal microscope for dynamic structural biology with single‐molecule FRET

Loidolt-Krüger M.
PhotonicsViews, Vol.020, p.40-44 (2023)

Reference to: MicroTime 200, SPADs
Related to: FLIM, FRET


Apolipoprotein E4 has extensive conformational heterogeneity in lipid-free and lipid-bound forms

Stuchell-Brereton M.D., Zimmerman M.I., Miller J.J., Mallimadugula U.L., Incicco J.J., Roy D., Smith L.G., Cubuk J., Baban B., DeKoster G.T., Frieden C., Bowman G.R., Soranno A.
PNAS, Vol.120, e2215371120 (2023)

Reference to: MicroTime 200, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), HydraHarp 400
Related to: FCS, FRET


Investigation of two-photon polymerized microstructures using fluorescence lifetime measurements

Wu X., Belqat M., Leuschel B., Noirbent G., Dumur F., Mougin K., Soangenberg A.
Polymer Chemistry, Vol.013, p.2902-2906 (2022)

Reference to: MicroTime 200, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), PMA Series, SymPhoTime
Related to: FLIM


Photoluminescence microscopy as a noninvasive characterization method for defects in gallium oxide and aluminum gallium oxide epitaxial films

Cooke J., Ranga P., Jesenovec J., Bhattacharyya A., Cheng X., Wang Y., McCloy J.S., Krishnamoorthy S., Scarpulla M.A., Sensale-Rodriguez B.
Optical Materials Express, Vol.012, p.4341-4353 (2022)

Reference to: MicroTime 200


The domains of yeast eIF4G, eIF4E and the cap fine-tune eIF4A activities through an intricate network of stimulatory and inhibitory effects

Krause L., Willing F., Andreou A.Z., Klostermeier D.
Nucleic Acids Research, Vol.050, p.6497-6510 (2022)

Reference to: MicroTime 200


Accurate adjusting the lattice strain of triple-cation and mixed-halide perovskites for high-performance photodetector

Kong W., Zhao C., Huang T., Li X., Xing J., Yu Z., Yang P., Li W., Yu W.
ACS Applied Materials & Interfaces, Vol.014, p.28154–28162 (2022)

Reference to: MicroTime 200


Direct growth of monolayer MoS2 on nanostructured silicon waveguides

Kuppadakkath A., Najafidehaghani E., Gan Z., Tuniz A., Ngo G.Q., Knopf H., Löchner F.J.F., Abbtahi F., Bucher T., Shradha S., Käsebier T., Palomba S., Felde N., Paul P., Ullsperger T., Schröder S., Szeghalmi A., Pertsch T., Staude I., Zeitner U., George A., Turchanin A., Eilenberger F.
Nanophotonics, Vol.011, p.4397-4408 (2022)

Reference to: MicroTime 200


Zero-thermal-quenching layered metal halide perovskite

Han J.H., Viswanath N.S.M., Park Y.M., Cho H.B., Jang S.W., Min J.W., Im W.B.
Chemistry of Materials, Vol.034, p.5690-5697 (2022)

Reference to: MicroTime 200, TimeHarp 260


Toward strong near-infrared absorption/emission from Carbon dots in aqueous media through solvothermal Fusion of large conjugated perylene derivatives with Post-surface engineering

Liu Y., Lei J.H., Wang G., Zhang Z., Wu J., Zhang B., Zhang H., Liu E., Wang L., Liu T.-M., Xing G., Ouyang D., Deng C.-X., Tang Z., Qu S.
Advanced Science, Vol.009, 2202283 (2022)

Reference to: MicroTime 200


Reasoning the photoluminescence blinking in CdSe−CdS heteronanostructures as stacking fault-based trap states

Thomas E.M., Pradhan N., Thomas K.G.
ACS Energy Letters, Vol.007, p.2856-2863 (2022)

Reference to: MicroTime 200


Understanding the interaction between inorganic and organic excitonic components of an inorganic-organic nanohybrid associate

Banerjee S., Chakraborty D., Preeyanka N., Sarkar M.
ChemNanoMat, Vol.008, e202200117 (2022)

Reference to: MicroTime 200, PicoHarp 300
Related to: FRET


Three-dimensional plasmonic nanocluster-driven light-matter interaction for photoluminescence enhancement and picomolar-level biosensing

Kim W.-G., Lee J.-M., Yang Y., Kim H., Deveraj V., Kim M., Jeong H., Choi E.-J., Yang J., Jang Y., Badloe T., Lee D., Rho J., Kim J.T., Oh J.-W.
Nano Letters, Vol.022, p.4702-4711 (2022)

Reference to: MicroTime 200


Probing polyvinylpyrrolidone-passivated graphene oxide nanoflakes as contrast agents inside tissue-like phantoms via multimodal confocal microscopy

Potara M., Suarasan S., Craciun A.-M., Focsan M., Hada A.-M., Astilean S.
Talanta, Vol.247, 123581 (2022)

Reference to: MicroTime 200


Preprocess dependence of optical properties of ensembles and single siphonaxanthin-containing major antenna from the marine green alga Codium fragile

Brotosudarmo T.H.P., Wittmann B., Seki S., Fujii R., Köhler J.
Scientific Reports, Vol.012, 8461 (2022)

Reference to: MicroTime 200, TimeHarp 260, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series)


Multimodal investigation into the interaction of quinacrine with microcavity-supported lipid bilayers

Sarangi N.K., Prabhakaran A., Keyes T.E.
Langmuir, Vol.038, p.6411-6424 (2022)

Reference to: MicroTime 200, SPADs
Related to: FLIM, FLCS


BiVO4 quadrangular nanoprisms with highly exposed {101} facets for selective photocatalytic oxidation of benzylamine

Lv M., Tong F., Wang Z., Liu Y., Wang P., Cheng H., Dai Y., Zheng Z., Huang B.
Journal of Materials Chemistry A, Vol.010, p.19699-19709 (2022)

Reference to: MicroTime 200, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), PicoHarp 300


Photoswitching fingerprint analysis bypasses the 10-nm resolution barrier

Helmerich D.A., Beliu G., Taban D., Meub M., Streit M., Kuhlemann A., Doose S., Sauer M.
Nature Methods, Vol.019, p.986-994 (2022)

Reference to: MicroTime 200, FLIMBee, FluoTime 200, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), FluoFit, PicoHarp 300, SPADs, SymPhoTime


Wavelength-dependent optical response of single photosynthetic antenna complexes from siphonous green alga codium fragile

Brotosudarmo T.H.P., Wittmann B., Seki S., Fujii R., Köhler J.
The Journal of Physical Chemistry Letters, Vol.013, p.5226-5231 (2022)

Reference to: MicroTime 200, FLIMBee, TimeHarp 260, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), PMA Series, SymPhoTime
Related to: FLIM


In-fibre second-harmonic generation with embedded two-dimensional materials

Ngo G.Q., Najafidehaghani E., Gan Z., Khazaee S., Siems M.P., George A., Schartner E.P., Nolte S., Ebendorff-Heidepriem H., Pertsch T., Tuniz A., Schmidt M.A., Peschel U., Turchanin A., Eilenberger F.
Nature Photonics (2022)

Reference to: MicroTime 200


Effect of particle interactions on the assemly of drying colloidal mixtures

Tinkler J.D., Scacchi A., Argaiz M., Tomovska R., Archer A.J., Willcock H., Martín-Fabiani I.
Langmuir, Vol.038, p.5361-5371 (2022)

Reference to: MicroTime 200, SymPhoTime


Plasmonic carbon nitride polymers to boost hydrogen generation

Tian D., Yin H., Liu L., Li B., Li J., Lou Z.
Advanced Sustainable Systems, Vol.006, 2200045 (2022)

Reference to: MicroTime 200, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series)


Micromanufacturing of geometrically-and dimensionally-precise molecular single-crystal photonic micro-resonators via focused ion beam milling

Pradeep V.V., Chandrasekar R.
Optics (2022)

Reference to: MicroTime 200, PicoHarp 300, SymPhoTime
Related to: FLIM