header image scientific

Bibliography

Our instruments are used by top reserchers world wide, including recent nobel prize winners, such as W.E. Moerner and S.W. Hell. Our bibliography is a collection of papers that mention explicitly PicoQuant or at least one of our product's name. Searching or browsing through the bibliography allows to find out which laboratories use PicoQuant devices and what type of applications have been reported so far.

The bibliography contains articles mentioning explicitly PicoQuant or at least one of our product's name (e.g. MicroTime). Most of the references can be found easily by full-text searches on the internet. However, some papers cite us only indirectly, sometimes not at all. Such publications are included only if the use of a PicoQuant product is known, for example, based on communication with the author(s). There are certainly many more articles reporting results obtained using PicoQuant devices. Unfortunately, such papers are often hidden for us. Please help completing this list.
Do you miss your publication? If yes, we will be happy to include it in our bibliography. Please send an e-mail to info@picoquant.com containing the appropriate citation. Thank you very much in advance for your kind co-operation.

more..


Searching for MicroTime 200

1293 results found.


Localization and orientation of xanthophylls in a lipid bilayer

Grudzinski W., Nierzwicki L., Welc R., Reszczynska E., Luchowski R., Czub J., Gruszecki W.I.
Scientific Reports, Vol.007, 9619 (2017)

Reference to: MicroTime 200, SymPhoTime


Carboplatin-loaded, raman-encoded, chitosan-coated silver nanotriangles as multimodal traceable nanotherapeutic delivery systems and ph reporters inside human ovarian cancer cells

Potara M., Nagy-Simon T., Craciun A.M., Suarasan S., Licarete E., Imre-Lucaci F., Astilean S.
ACS Applied Materials & Interfaces, Vol.009, p.32565-32567 (2017)

Reference to: MicroTime 200, PicoHarp 300, SPADs, SymPhoTime
Related to: FLIM


g-C3N4/TiO2 mesocrystals composite for H2 evolution under visible-light irradiation and its charge carrier dynamics

Elbanna O., Fujitsuka M., Majima T.
ACS Applied Materials & Interfaces, Vol.009, p.34844-34854 (2017)

Reference to: MicroTime 200


Storage stability of biodegradable polyethylene glycol microspheres

Jain E., Sheth S., Polito K., Sell S.A., Zustiak S.P.
Materials Research Express, Vol.004, 105403 (2017)

Reference to: MicroTime 200
Related to: FCS


Enhanced hydrogen production from ammonia borane using controlled plasmonic performance of Au nanoparticles deposited on TiO 2

Jo S., Verma P., Kuwahara Y., Mori K., Choi W., Yamashita H.
The Journal of Materials Chemistry A, Vol.005, p.21883-21892 (2017)

Reference to: MicroTime 200
Related to: FLIM, TRPL


Versatile H2O2-driven mixed aerogel synthesis from CdTe and bimetallic noble metal nanoparticles

Wendt R., Märker B., Dubavik A., Herrmann A.-K., Wollgarten M., Rakovich Y.P., Eychmüller A., Rademann K., Hendel T.,
The Journal of Materials Chemistry C, Vol.005, p.10251-10259 (2017)

Reference to: MicroTime 200, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series)


Platinum electrocatalysts with plasmonic nano-cores for photo-enhanced oxygen-reduction

Zheng Z., Xie W., Li M., Ng Y.H., Wang D.-W., Dai Y., Huang B., Amal R.
Nano Energy, Vol.041, p.233-242 (2017)

Reference to: MicroTime 200, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series)


Frequency-selective Photobleaching as a route to chromatic control in supramolecular OLED devices

Tsai Y.T., Liu H.F., Peng B.J., Tseng K.P., Kuo M.C., Wong K.T., Wantz G., Hirsch L., Raffy G., Del Guerzo A., Bassani D.M.
ACS Applied Materials & Interfaces, Vol.041, p.36045–36052 (2017)

Reference to: MicroTime 200, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), PicoHarp 300


Influence of graphene oxide/Ag nanoparticle composites on the fluorescence properties of organic dyes

Gough J.J., Siewerska K.E., Mehigan S., Hanlon D., Backes C., Gholamvand Z., Szydłowska B.M., Blau W.J., McCabe E., Bradley A.L.
Journal of Nanoscience and Nanotechnology, Vol.017, p.8901-8911 (2017)

Reference to: MicroTime 200


Localization of 523 and 794 defects in diamond

Stepanov F.A., Emelyanova A.S., Rakevich A.L., mironov V.P., Zedgenizov D.A., Shatskiy V.S., Martynovich E.F.
Bulletin of the Russian Academy of Sciences, Vol.081, p.1099-1104 (2017)

Reference to: MicroTime 200


Temperature quenching of the luminescence of SiV centers in CVD diamond films

Emelyanova A.S., Rakevich A.L., Martynovich E.F., Mironov V.P., Bolshakov A.P., Sedov V.S., Ralchenko V.G., Konov V.I.
Bulletin of the Russian Academy of Sciences, Vol.081, p.1154-1158 (2017)

Reference to: MicroTime 200


Selective double-labeling of cell-free synthesized proteins for more accurate smFRET studies

Sadoine M., Cerminara M., Kempf N., Gerrits M., Fitter J., Katranidis A.
Analytical Chemistry, Vol.089, p.11278-11285 (2017)

Reference to: MicroTime 200
Related to: FRET


High perfomance PbS colloidal quantum dot solar cells by employing solution-processed CdS thin films from a single-source precursor as the electron transport layer

Hu L., Patterson R.J., Hu Y., Chen W., Zhang Z., Yuan L., Chen Z., Conibeer G.J., Wang G., Huang S.
Advanced Functional Materials, Vol.027, 1703687 (2017)

Reference to: MicroTime 200


Environmentally benign synthesis of CuInS2/ZnO heteronanorods: visible light activated photocatalysis of organic pollutant/bacteria and its mechanism study

Baek M., Kum E.-J., Hong S.W., Kim W., Yong K.
Photochemical & Photobiological Science, Vol.016, p.1792-1800 (2017)

Reference to: MicroTime 200


2D and 3D surface photopatterning via laser-promoted homopolymerization of a perfluorophenyl azide-substituted BODIPY

Raffy G., Bofinger R., Tron A., Del Guerzo A., McClenaghan N.D., Vincent J.-M.
Nanoscale, Vol.009, p.16908-16914 (2017)

Reference to: MicroTime 200, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series)


Distorted carbon nitride structure with substituted benzene moieties for enhanced visible light photoocatalytic activities

Kim H., Gim S., Jeon T.H., Kim H., Choi W.
ACS Applied Materials & Interfaces, Vol.009, p.40360-40368 (2017)

Reference to: MicroTime 200


Instantaneous colorimetric and fluorogenic detection of phosgene with a meso-Oxime-BODIPY

Lim T.-I., Hwang B., Bouffard J., Kim Y.
Analytical Chemistry, Vol.089, p.12837-12842 (2017)

Reference to: MicroTime 200


Gold nanoclusters with a wide range of fluorescence characteristics generated in situ in polymer thin films: potential gas sensing application

Madhuri U.D., Radhakrishnan T.P.
Dalton Transactions, Vol.046, p.16236-16243 (2017)

Reference to: MicroTime 200
Related to: FLIM


Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines

Mariia Lunova M., Prokhorov A., Jirsa M., Hof M., Olżyńska A., Jurkiewicz P., Kubinová S., Lunov O., Dejneka A.
Scientific Reports, Vol.007, 16049 (2017)

Reference to: MicroTime 200, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series)


Imaging viscosity of intragranular mucin matrix in cystic fibrosis cells

Requena S., Ponomarchuk O., Castillo M., Rebik J., Brochiero E., Borejdo J., Gryczynski I., Dzyuba S.V., Gryczynski Z., Grygorczyk R., Fudala R.
Scientific Reports, Vol.007, 16761 (2017)

Reference to: MicroTime 200, SymPhoTime


Förster resonance energy transfer in hybrid associates of colloidal Ag2S quantum dots with thionine molecules

Ovchinnikov O.V., Smirnov M.S., Kondratenko T.S., Ambrosevich S.A., Metlin M.T., Grevtseva I.G., Perepelitsa A.S.
Journal of Nanoparticle Research, Vol.019, p.1-9 (2017)

Reference to: MicroTime 200, PicoHarp 300, SPADs
Related to: FRET


Reversible cryo-arrests of living cells to pause molecular movements for high-resolution imaging

Huebinger J., Masip M.E., Christmann J., Wehner F., Bastiaens P.I.H.
bio-protocol, Vol.007, e2236 (2017)

Reference to: MicroTime 200


Efficient acetate sensor in biological media based on a selective Excited State Proton Transfer (ESPT) reaction

Puente-Muñoz V., Paredes J.M., Resa S., Ortuño A.M., Talavera E.M., Miguel D.a, Cuerva J.M., Crovetto L.
Sensors and Actuators B: Chemical, Vol.250, p.623-628 (2017)

Reference to: MicroTime 200, FluoTime 200, TimeHarp 100/200, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), FluoFit


Luminescent centers in nanolayers of LiF crystals with embedded silver ions

Shipilova O.I., Dresvyansky V.P., Martynovich E.F., Rakevich A.L., Shendrik R.Yu., Paperny V.L., Chernich A.A.
Journal of Physics: Conference Series, Vol.830, 012145 (2017)

Reference to: MicroTime 200


Microgels enable capacious uptake and controlled release of architecturally complex macromolecular species

Walta S., Pergushov D.V., Oppermann A., Steinschulte A.A., Geisel K., Sigolaeva L.V., Plamper F.A., Wöll D., Richtering W.
Polymer, Vol.119, p.50-58 (2017)

Reference to: MicroTime 200, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series)