Bibliography
The bibliography contains articles mentioning explicitly PicoQuant or at least one of our product's name (e.g. MicroTime).
Most of the references can be found easily by full-text searches on the internet. However, some papers cite us only indirectly,
sometimes not at all. Such publications are included only if the use of a PicoQuant product is known, for example, based on
communication with the author(s). There are certainly many more articles reporting results obtained using PicoQuant devices.
Unfortunately, such papers are often hidden for us. Please help completing this list.
Do you miss your publication? If yes, we will be happy to include it in our bibliography. Please send an e-mail
to info@picoquant.com containing the appropriate citation.
Thank you very much in advance for your kind co-operation.
more..
Searching for
8875 results found.
Growth and scintillation performances of SrI2:Eu with low activator concentration
Smerechuk A., Galenin E., Nesterkina V., Sidletskiy O., Dujardin C.
Journal of Crystal Growth, Vol.521, p.41-45 (2019)
Reference to: PMA Series
Decay associated fourier spectroscopy: visible to shortwave infrared time-resolved photoluminescence spectra
Atallah T.L., Sica A.V., Shin A.J., Friedman H.C., Kahrobai Y.K., Caram J.R.
The Journal of Physical Chemistry A, Vol.123, p.6792-6798 (2019)
Reference to: Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), HydraHarp 400
Diethylenetriamine-doped graphene oxide quantum dots with tunable photoluminescence for optoelectronic applications
Santiago S.R.M., Chang C.-H., Lin T.-N., Yuan C.-T., Shen J.-L.
ACS Applied Nano Materials, Vl.002, p.3925-3933 (2019)
Reference to: FluoTime 300
Coalescence-driven simultaneous enhancement and quenching of the excited states of silver nanoclusters
Abbas M.A., Yoon S.J., Khan R., Lee J., Bang J.H.
The Journal of Physical Chemistry C, Vol.123, p.14921-14927 (2019)
Reference to: MicroTime 200
Investigation of novel substituted zinc and aluminium phthalocyanines for photodynamic therapy of epithelial breast cancer
Mohammed I., Oluwole D.O., Nemakal M., Sannegowda L.K., Nyokong T.
Dyes and Pigments, Vol.170, 107592 (2019)
Reference to: FluoTime 300
Electrically pumped white‐light‐emitting diodes based on histidine‐doped MoS2 quantum dots
Lu G.-Z., Wu M.-J., Lin T.-N., Chang C.-Y., Lin W.-L., Chen Y.T., Hou C.-F., Cheng H.-J., Lin T.-Y., Shen J.-L., Chen Y.-F.
Small, Vol.015, 1901908 (2019)
Reference to: FluoTime 300
Brilliant blue, green, yellow, and red fluorescent diamond particles: synthesis, characterization, and multiplex imaging demonstrations
Nunn N., Prabhakar N., Reineck P., Magidson V., Kamiya E., Heinz W.F., Torelli M.D., Rosenholm J., Zaitsev A., Shenderova O.
Nanoscale, Vol.011, p.11584-11595 (2019)
Reference to: TimeHarp 260
Controllable formation of luminescent carbon quantum dots mediated by the fano resonances formed in oligomers of gold nanoparticles
Zheng Y., Liu H., Li J., Xiang J., Panmai M., Dai Q., Xu Y., Tie S., Lan S.
Advanced Materials, Vol.031, 1901371 (2019)
Reference to: PicoHarp 300
Defect site engineering for charge recombination and stability via polymer surfactant incorporation with an ultra-small amount in perovskite solar cells
Hong J., Kim H., Hwang I.
Organic Electronics, Vol.073, p.87-93 (2019)
Reference to: FluoTime 300
Fluorescent carbon quantum dots with Fe(III/II) irons as bridge for the detection of ascorbic acid and H2O2
Luo K., Jiang X.
Journal of Fluorescence, Vol.029, p.769-777 (2019)
Reference to: FluoTime 100
Two-photon quantum interference and entanglement at 2.1 μm
Prabhakar S., Shields T., Dada A.C., Ebrahim M., Taylor G.G., Morozov D., Erotokritou K., Miki S., Yabuno M., Terai H., Gawith C., Kues M., Caspani L., Hadfield R.H., Clerici M.
Science Advances, Vol.006, eaay5195 (2019)
Reference to: HydraHarp 400
Tunable three-dimensional plasmonic arrays for large near-infrared fluorescence enhancement
Pang J.S., Theodorou I.G., Centeno A., Petrov P.K., Alford N.M., Ryan M.P., Xie F.
ACS Applied Materials & Interfaces, Vol.011, p.23083-23092 (2019)
Reference to: FluoTime 200, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), FluoFit, PMA Series
Optical characterization of a two-dimensional BODIPY-based polymer material and its related chromophores
Piatkowski P., Moreno M., Liras M., Sánchez F., Douhal A.
Journal of Materials Chemistry C, Vol.007, p.7872-7884 (2019)
Reference to: FluoTime 200, FluoFit
Luminescence properties of pyrazolic 1,3-diketone Ho3+ complex with 1,10-phenanthroline
Komissar D. A., Metlin M. T., Ambrozevich S. A., Taydakov I. V., Tobokhova A. S., Varaksina E. A., Selyukov, A. S.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol.222, 117229 (2019)
Reference to: SPADs
Poly(ethylene oxide)-assisted energy funneling for efficient perovskite light emission
Xu T., Meng Y., Wang M., Li M., Ahmadi M., Xiong Z., Yan S., Chen B., Hu B.
Journal of Materials Chemistry C, Vol.007, p.8287-8293 (2019)
Reference to: Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), PicoHarp 300, SymPhoTime
Photocontrolling protein–peptide interactions: from minimal perturbation to complete unbinding
Jankovic B., Gulzar A., Zanobini C., Bozovic O., Wolf S., Stock G., Hamm P.
Journal of the American Chemical Society, Vol.141, p.10702-10710 (2019)
Reference to: PMA Series
Colloidal aluminium antimonide quantum dots
Jalali H.B., Sadeghi S., Sahin M., Ozturk H., Ow-Yang C.Q., Nizamoglu S.
Chemistry of Materials, Vol.031, p.4743-4747 (2019)
Reference to: MicroTime 100
The effect of structural dimensionality on carrier mobility in lead-halide perovskites
Hartono N.T.P., Sun S., Gélvez-Rueda M., Pierone P.J., Erodici M.P., Yoo J., Wei F., Bawendi M., Grozema F.C., Sher M.-j., Buonassisi T., Correa-Baena J.-P.
Journal of Materials Chemistry A, Vol.007, p.23949-23957 (2019)
Reference to: Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), PicoHarp 300
Nonlocality test of energy-time entanglement via nonlocal dispersion cancellation with nonlocal detection
Li B., Hou F., Quan R., Dong R., You L., Li H., Xiang X., Liu T., Zhang S.
Physical Review A, Vol.100, 053803 (2019)
Reference to: PicoHarp 300
Large-alphabet encoding for higher-rate quantum key distribution
Lee C., Bunandar D., Zhang Z., Steinbrecher G.R., Dixon P.B., Wong F.N.C., Shapiro J.H., Hamilton S.A., Englund D.
Optics Express, Vol.027, p.17539-17549 (2019)
Reference to: HydraHarp 400
Behavior of the DPH fluorescence probe in membranes perturbed by drugs
Poojari C., Wilkosz N., Lira R.B., Dimova R., Jurkiewicz P., Petka R., Kepczynski M., Róg T.
Chemistry and Physics of Lipids, Vol.223, 104784 (2019)
Reference to: FluoFit
Polyethylenimine-capped silver nanoclusters as fluorescent sensors for the rapid detection of ellagic acid in cosmetics
Hsu C.-C., Chao Y.-Y., Wang S.-W., Chen Y.-L.
Talanta, Vol.204, p.484-490 (2019)
Reference to: TimeHarp 100/200
Energy band edge alignment of anisotropic BiVO4 to drive photoelectrochemical hydrogen evolution
Kim C.W., Ji S., Myung JongKang M.J., Park H., Li F., Cheng H.-M., Kang Y.S.
Materials Today Energy, Vol.013, p.205-213 (2019)
Reference to: MicroTime 200
Effect of substituents on the photophysical properties and bioimaging application of BODIPY derivatives with Triphenylamine substituents
Bui H.T., Mai K., Kim B., Choi K.-H., Park B.J., Kim H.-J., Cho S.
The Journal of Physical Chemistry B, Vol.123, p.5601-5607 (2019)
Reference to: Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series)
Study of conformational transitions of i-motif DNA using time-resolved fluorescence and multivariate analysis methods
Benabou S., Ruckebusch C., Sliwa M., Aviñó A., Eritja R., Gargallo R., de Juan A.
Nucleic Acids Research, Vol.047, p.6590-6605 (2019)
Reference to: FluoTime 200, TimeHarp 260, FluoFit