
Taiko PDL M1

Application Programming Interface
 Library for Software Developers

Programming Reference Handbook

Document version 2.1.1

Programming Interface for the Taiko PDL M1

PicoQuant GmbH Taiko PDL M1 Programming Reference

Table of Contents

1. Introduction... 3

2. Library for Software Developers..4

2.1. Covered Library and Hardware Versions...4

2.2. General Notes.. 4

2.2.1. Naming Conventions...4

2.2.2. Calling Conventions...4

2.2.3. Transferring Arguments and Memory Allocation..5

2.2.4. Return Values.. 5

2.2.5. Running Considerations..5

2.2.6. Status Updates and Tagged Communication..5

2.3. Using the Taiko API DLLs under Linux..6

2.3.1. Requirements.. 6

2.3.2. Device Access Permissions..6

2.3.3. Using the Library and Demo Programs..7

3. List of API Functions... 8

3.1. Interface Functions.. 8

3.2. Basic Device Functions..10

3.3. Device Information Functions...12

3.4. Laser Head Information Functions...14

3.5. Status and Error Information Functions..16

3.6. Laser Locking Functions..19

3.7. Laser Emission Mode Functions..19

3.8. Triggering and Gating Functions..21

3.9. Pulse Frequency and Burst Setting Functions...23

3.10. Functions for Temperature Settings...25

3.11. Laser Head Functions for Pulse Power Settings..27

3.12. Laser Head Functions for CW Power Settings...29

3.13. Special Laser Head Functions...31

3.14. Preset Functions.. 31

4. Demonstration Programs..33

5. Legal Terms.. 34

5.1. Copyright... 34

5.2. Trademarks.. 34

6. Appendix... 35

6.1. Table of Common Constants...35

6.2. Table of Return / Error Codes..35

Page 1

PicoQuant GmbH Taiko PDL M1 Programming Reference

6.3. Table of Assigned Status Bits..37

6.4. Table of Useful Status Masks..39

6.5. Table of Declared Tag Types...42

6.6. Table of Documented Tags..42

6.7. Table of Supported Temperature Scales...44

6.8. Table of Laser Head Feature Bits..44

6.9. Table of Laser Head Types..44

6.10. Index.. 45

Page 2

PicoQuant GmbH Taiko PDL M1 Programming Reference

1. Introduction
The Taiko is a smart, universal laser driver that can operate and monitor any picosecond pulsed laser head
from the LDH-I Series. As a smart driver, the Taiko interfaces with a laser head to read out and display vari-
ous operational parameters. These include the current emission wavelength, laser head temperature, repeti -
tion rate, current output intensity and pulse shape regime based on calibration data stored in the head.

Every LDH-I head is calibrated during manufacturing with regards to its intensity / output power curve, pulse
shape regime, and temperature dependent wavelength shift. The Taiko is thus able to provide an indication of
current output power and central wavelength during operation.

The Taiko laser driver can be controlled via two interface types: either through the local, single-button menu-
driven system or remotely by software running on a PC (using a USB connection). A powerful, Windows
based GUI written by PicoQuant is included in the Taiko package.

PicoQuant also provides an Application Programming Interface (API) that allows writing your own Windows-
based control software for the Taiko. This reference handbook aims to provide an overview of all API func-
tions available for such tasks.

Page 3

PicoQuant GmbH Taiko PDL M1 Programming Reference

2. Library for Software Developers
In addition to the powerful, general purpose Taiko control software included, you might want to create your
own control sequences or graphical user interfaces that are tailored to your needs. This should be an easy
task for an experienced software developer with the API provided as Windows™ dynamic link library.

The library is provided in two different “flavors”: as x86 (32 bit) and x64 (64 bit) type. You can find out the
library’s version number by checking the file version displayed by the properties page of the Windows™
Explorer: right click on the file name, select “Properties” from the context menu and then navigate to the
“Details” tab.

The major high and low word code the actual software version. The bit width of the target architecture is
encoded in the third part of the version number (a. k. a. “minor high word”), while the minor low word contains
the build number. A version number like “2.0.32.xxxx” stands for the software version 2.0, compiled for an
x86 target architecture and with build number xxxx. Correspondingly, “2.0.64.xxxx” identifies the same library
version, but compiled for an x64 architecture.

With the system software (GUI and DLL), we also provide “ready to use” library interfaces in C/C++ and Del -
phi including language specific declaration files and the import library “PDLM_Lib.lib”. Developers who use
other languages supporting access to DLLs may build their own interfaces analogue to the purchased, by
simply adapting the declaration files to their desired language and linking their project with the aforemen-
tioned import library. It might be necessary to encapsulate the functions-to-call for convenience.

2.1. Covered Library and Hardware Versions

This handbook refers to library version 2.1.[target].[build > 4077] (or higher)

Please note that the version numbering convention used for this library will increase the minor version num-
ber only if functions have been discontinued. As work on the library is on going, you might see improved per-
formance, stability, or functionality by simply substituting your library for the most recent version, as long as
the major and minor version numbers are still the same. Also, make sure that you do not use a build number
lower than the one you built and tested your software against. All library version with later build numbers
should work as expected with your product.

The Taiko PDL M1 should have the firmware version 2.1.xxx (or higher)

Newer firmware version may provide improved performance or additional features. Please check the firmware
release notes prior to updating. A special note will be provided in the description of API functions that require
a higher firmware version.

2.2. General Notes

All functions exported by this library behave according to a few conventions, the most important of which are
listed in the following sections. Since the library was implemented in C/C++, we chose to document it in the
same language. In order to focus on the essentials, we omit storage classes, calling conventions and all com-
piler specific details for individual functions. Note that if you use Pascal, we used true booleans wherever
appropriate.

2.2.1. Naming Conventions

Every API function name starts with the library preamble “PDLM_”. Note that in this handbook, all functions
have been sorted into logical groups for clarity’s sake.

2.2.2. Calling Conventions

Note that all functions described here use the stdcall calling convention. Refer to the purchased demo
code and to the developer’s manual specific to your compiler for more detailed information.

Page 4

PicoQuant GmbH Taiko PDL M1 Programming Reference

2.2.3. Transferring Arguments and Memory Allocation

The transferring convention for all input arguments (marked with an “I”) is “by value” except for strings. For
input string arguments as well as for all output arguments (marked with “O”), the transferring convention is
“by reference”. Bi-directional arguments (marked with “B”) can be used for input as well as output arguments.
Therefore they use the transferring convention “by reference” in either direction. Use the “var” – clause in
Pascal resp. a pointer to the destination variable in C/C++ to implement outputs or bi-directionals.

Calling programs have to take care of memory allocation for output arguments. Refer to the C header files for
a list of necessary maximal string or array lengths. All strings referred to by this document are strings of 8 bit
characters (ISO-8859) and zero terminated. Note that all length information for strings are given as net sizes,
so don't forget for the zero termination byte in C/C++.

2.2.4. Return Values

All functions return an error code (signed integer, 32 bit).

function returns: 0 : success
 < 0 : error

You should always check whether the return code of every function call is 0 (i.e. “PDLM_ERROR_NONE”).
Note that the library interface function “PDLM_DecodeError” can convert any returned error code into a
human-readable text string. Refer to Appendix 6.2 for a list of error codes.

2.2.5. Running Considerations

Most of the functions described here need an operational Taiko PDL M1 to work properly. Since the library is
prepared to work with more than one connected device, you will have to identify the device you want to
address by its USB channel index (iDevIdx, ranging from 0 to 7).

That index can be obtained from the Windows Device Manager. In a more generic way, you could build a
loop that tries to open devices on all channels and – using the returned error code – compare to the serial
number of the desired device. For an even more convenient approach to this task, we designed the special
function "PDLM_OpenGetSerNumAndClose" (see section 3.2), which can get the state and serial number of
a device eventhough it might already be opened.

Note that the open device operation establishes an exclusive access to the device! You cannot open a device
if another program is already having access to it. However, an application may open more than one device
and communicate with them quasi simultaneous. Do keep in mind that the library is not thread-safe by
design.

2.2.6. Status Updates and Tagged Communication

Since the Taiko PDL M1 can be controlled via the local and a remote interface at the same time, any parame-
ter or state changes have to be communicated the remote host software, no matter whether they were trig -
gered manually or autonomously. This is required to ensure that the locally and remotely displayed status of
the Taiko is always synchronized.

Any such change will result in the setting or deleting of an associated flag in the Taiko’s status word. As an
example, changing a parameter such as the temperature will set a status flag with the symbolic name
“PDLM_DEVSTATE_PARAMETER_CHANGES_PENDING”. A list of all status flags can be found in Appendix 6.3.
Note that flags can be logically grouped and even evaluated together (e.g., all laser locking status flags).

The Taiko’s status word is regularly polled in the background by the API DLL using a timer (at least every
750 ms). This process is automatic and does not need to be triggered by the host software. Certain groups of
flags can also lead the API DLL to send a windows message to the registered host application that is listen-
ing. Refer to the function "PDLM_SetHWND" for more details. If the host application supports handling these
messages, then state changes can be updated asynchronously.

Information on state or parameter changes are transferred between the API DLL and host applications based
on a tagged communication system. This system is a (none or weakly specified) transfer method that is, in
particular, used to send status feedback from the Taiko to a host application.

Page 5

PicoQuant GmbH Taiko PDL M1 Programming Reference

When a host application detects that a parameter has changed either via a flag set in the status word or by
receiving one of the above mentioned messages, it will call the function “PDLM_GetQueuedChanges”. The
function then returns a list of tagged values, each of which consists of its tag ID (an unsigned integer), and
the actual value of the parameter. You may retrieve the name and data type code of the tagged value by a
call to the function "PDLM_GetTagDescription". For more information on this subject, refer also to the
demo code provided..

A great advantage of this communication type is that one does not have to query all variable parameter each
time, which would otherwise negatively impact system performance. Instead, the generated list (of variable
length) will only contain those tags corresponding to parameters that have actually changed. The host appli -
cation can recognize which values have changed by either referring to the tag ID or the tag name and type.

As an added bonus, this type of communication is “future proofed”. This means that if an older host applica-
tion does not know about a certain tag, it can simply ignore that specific feedback entry. Conversely, a Taiko
with an older firmware version will not be able to generate tags that would be introduced in newer versions. In
both cases, compatibility is maintained as the Taiko and host application can still communicate usefully (albeit
without access to the latest features).

2.3. Using the Taiko API DLLs under Linux

 WARNING! The use of the Taiko API DLLs under Linux ist not straightforward, PicoQuant can
provide only limited support and gives no warranty of success.

The Taiko API DLLs can be used under Linux via Wine, a free and open source compatibility layer that allows
running software developed for Microsoft WindowsTM under Linux. Providing an in-depth introduction to Wine
lies outside of this manual’s scope. Please refer to the official Wine User’s Guide at https://wiki.winehq.org/
Winelib_User's_Guide for detailed information on installing and using Wine.

2.3.1. Requirements

Supported hardware is at this time solely the “x86-64” CPU platform as found in the majority of recent PCs.
Required is a PC with at least one free USB 2.0 port.

Note that Wine compatibility has been successfully tested under Linux Mint 19.2 (x86) with Wine-3.6, Ubuntu
(x64) 18.04.04 with Wine-3.0, Ubuntu 20.04 (x64) with Wine-5.0, and Mint 19.3 (x64) with Wine-4.0. Pico-
Quant makes no warranties (implicit or otherwise) in regards to compatibility with other combinations of distri-
butions and WINE versions.

Using the library requires libusb (https://libusb.info/). The formally required version is 1.0 or higher, tested
versions were 1.0.19, 1.0.20, 1.0.21 and 1.0.23. Libusb is typically installed by default on all major Linux dis-
tributions.

2.3.2. Device Access Permissions

For device access through libusb, your kernel needs support for the USB filesystem (usbfs) and that filesys-
tem must be mounted. This is done automatically, if /etc/fstab contains a line like this:

usbfs /proc/bus/usb usbfs defaults 0 0

This should routinely be the case if you installed any of the tested distributions. The permissions for the
device files used by libusb must be adjusted for user access. Otherwise only root can use the device(s). The
device files are located in /proc/bus/usb/. Any manual change would not be permanent, however. The permis-
sions will be reset after reboot or replugging the device. A much more elegant way of finding the right files
and setting the suitable permissions is by means of hotplugging scripts or udev. Which mechanism you can
use depends on the Linux distribution you have. Most of the recent distributions use udev.

For automated setting of the device file permissions with udev you have to add an entry to the set of rules
files that are contained in /etc/udev/rules.d. Udev processes these files in alphabetical order. The default file
is usually called 50-udev.rules. Don't change this file as it could be overwritten when you upgrade udev.
Instead, put your custom rule for the Taiko in a separate file. The typical content of this file should be:

ATTR{idVendor}=="0d0e", ATTR{idProduct}=="0012", MODE="666"

Page 6

https://wiki.winehq.org/Winelib_User's_Guide
https://wiki.winehq.org/Winelib_User's_Guide

PicoQuant GmbH Taiko PDL M1 Programming Reference

A udev install script is provided on the installation medium that was delivered with your Taiko. The script is
named install and can be found in the subfolder Taiko_Linux. Note that the “exectue” flag for the script
needs to be set:

chmod +x install

Note that this requires root permissions.

The name of the rules file is important: Each time a device is detected by the udev system, the files are read
in alphabetical order, line by line, until a match is found. Note that different distributions may use different rule
file names for various categories. For instance, Ubuntu organizes the rules into further files: 20-
names.rules, 40-permissions.rules, and 60-symlinks.rules. In other distributions they are
not separated by those categories, as you can see by studying 50-udev.rules. Instead of editing the exist-
ing files, it is therefore usually recommended to put all of your modifications in a separate file like 10-ude-
v.rules or 10-local.rules. The low number at the beginning of the file name ensures it will be processed before
the default file. However, later rules that are more general (applying to a whole class of devices) may later
override the desired access rights. This is the case for USB devices handled through Libusb. It is therefore
important that you use a rules file for the Taiko that gets evaluated after the general case. The default naming
Taiko.rules most likely ensures this but if you see problems you may want to check.

Note that the presence of the rules file may not be sufficient to instantly access your device. It may be suffi-
cient to re-plug the devices but it may also be necessary to instruct udev to reload the rules. Note that there
are different udev implementations with different command sets. On some distributions you must reboot to
activate changes, on others you can reload rule changes and restart udev with these commands:

udevcontrol reload_rules

udevstart

2.3.3. Using the Library and Demo Programs

Running the install script (see section 2.3.2) will create a folder called API with multiple sub-folders,
including API/Taiko_Linux, API/Demos and API/Win32.

The API/Win32 sub-folder contains the complete run time environment of the Windows based Taiko remote
GUI (including the required DLLs files). The various demonstartion programs can be found in the sub-folder
API/Demos/<language>, where <language> stands for the respective programming language. The only
exception being Python, where the files are located under API/Demos. The required library files are also
included in each sub-folder so that no file copying is required.

The library files (32 bit Windows DLLs) can be found in API/Taiko_Linux. When developing your own
program, the two files pquwstub.DLL and PDLM_Lib.DLL need to be copied into the same folder as your
project in order to run it with Wine.

Page 7

PicoQuant GmbH Taiko PDL M1 Programming Reference

3. List of API Functions
This section provides an overview of all provided API functions, their arguments (including type), important
(non-trivial) return values, as well as a short description of the function. Note that importing arguments are
labeled with an “I”, while exporting ones with an “O”. Bidirectional arguments has the label “B” (i.e. “I/O”).
Arguments prefaced with an asterisk (*) represent pointers.

3.1. Interface Functions

Unlike most other functions, the ones described here do not require a device context (as given by the
USBIdx). They can be successfully run even when no operational Taiko device is available.

/* C/C++ */ int PDLM_GetLibraryVersion (char *Version
 uint32_t uiBuffLen);

Arguments: *Version O pointer to the output string buffer
uiBuffLen I maximum string buffer length for transmission

Returns: PDLM_ERROR_BUFFER_TOO_SMALL if the provided buffer is to small

Description: Provides the version number of the currently installed library as a string. The string is format-
ted as follows: <major version:1>.<minor version:1>.<target:2>.<build:4>,
where <target> indicates the CPU word width (either 32 or 64 bits). Please consider hold-
ing reserves of up to two additional characters for <build> (refer also to Appendix 6.2,
“PDLM_LIBVERSION_MAXLEN”). To ensure compatibility with the expected reference library,
make sure that the first 7 characters match.

/* C/C++ */ int PDLM_LibIsRunningInWine (uint32_t *IsRunningInWine);

Arguments: *IsRunningInWine I pointer to an unsigned integer variable that returns a
boolean; true, if running in a Wine environment on a POSIX
system

Returns: PDLM_ERROR_NONE (always)

Description: This function returns the boolean information whether the library is running in a Wine environ-
ment, which may be relevant for support cases. Besides this, this function is solely informa-
tive.

/* C/C++ */ int PDLM_GetUSBDriverInfo (char *cName
 uint32_t uiNBuffLen
 char *cVersion
 uint32_t uiVBuffLen

 char *cDate
 uint32_t uiDBuffLen);

Arguments: *cName O pointer to a string variable for the USB driver service name
uiNBuffLen I maximum string buffer length for transmission of the service name
*cVersion O pointer to a string variable for the USB driver version
uiVBuffLen I maximum string buffer length for transmission of the driver version
*cDate O pointer to a string variable for the USB driver date
uiDBuffLen I maximum string buffer length for transmission of the driver date

Returns: PDLM_ERROR_BUFFER_TOO_SMALL if any of the provided buffers is to small

Description: Provides information on the USB driver (driver service name, driver version, and driver date)

Page 8

PicoQuant GmbH Taiko PDL M1 Programming Reference

/* C/C++ */ int PDLM_DecodeError (int iErrCode
 char *cBuffer
 uint32_t *uiBuffLen);

Arguments: iErrCode I the error number
*cBuffer O pointer to the output string buffer
*uiBuffLen B pointer to a variable that contains the maximum string buffer length

if set to 0, the length of the error text is returned in this variable but
no text is returned in cBuffer

Returns: PDLM_ERROR_UNKNOWN_ERRORCODE if the error code is not found
PDLM_ERROR_BUFFER_TOO_SMALL if the provided buffer is to small

Description: Provides a human readable error string for a given error code. See also Appendix 6.2 for a
list of all error codes.

/* C/C++ */ int PDLM_GetTagDescription (uint32_t Tag
 uint32_t *TypeCode
 char *cName);

Arguments: Tag I the tag code
*TypeCode O pointer to an unsigned integer variable that returns the type code of

the tag
*cName O pointer to a string variable that returns the name of the tag

Returns: PDLM_ERROR_UNKNOWN_TAG if no tag is registered for the given tag code

Description: Gets the *TypeCode and *cName as a formal description of the requested tag. Check the
tables “Table of Declared Tag Types” in Appendix 6.5 and “Table of Documented Tags” in
Appendix 6.6, respectively, for a list of valid tag types.

/* C/C++ */ int PDLM_DecodePulseShape (uint32_t shape
 char *cBuffer
 uint32_t uiBuffLen);

Arguments: shape I the tag code
*cBuffer O pointer to the output string buffer
uiBuffLen I maximum string buffer length for transmission

Returns: PDLM_ERROR_BUFFER_TOO_SMALL if the provided buffer is to small

Description: Provides a human-readable description of a pulse shape code. These codes indicate in
which range the laser head is currently operating. Valid values are:

Value Description

0 Broadened pulse regime (due to high power settings)

1 Narrow pulse regime or “single pulse” (laser diode is operating at a pulse width corresponding to
its specification)

2 Sub-threshold (or “LED domain”). No lasing occurs, only spontaneous emission

3 Unknown pulse shape

Page 9

PicoQuant GmbH Taiko PDL M1 Programming Reference

/* C/C++ */ int PDLM_DecodeLHFeatures (uint32_t LHFeatures
 char *cBuffer
 uint32_t uiBuffLen);

Arguments: shape I the tag code
*cBuffer O pointer to the output string buffer
uiBuffLen I maximum string buffer length for transmission

Returns: PDLM_ERROR_BUFFER_TOO_SMALL if the provided buffer is to small

Description: Turns the bit encoded feature list of a laser head into a human-readable list with each field
separated by a semi-colon (;). Note that a sufficiently big buffer needs to be provided. Since
the feature set varies from laser head to laser head, a recommended fixed length cannot be
provided. However, a block size of 256 bytes should be large enough for all currently avail-
able laser heads (subject to change).

/* C/C++ */ int PDLM_DecodeSystemStatus (uint32_t state
 char *cBuffer
 uint32_t uiBuffLen);

Arguments: state I the status code to decode
*cBuffer O pointer to a string variable for the decoded status
uiBuffLen I maximum string buffer length for transmission

Returns: PDLM_ERROR_BUFFER_TOO_SMALL if the provided buffer is to small

Description: decodes the status code to a human-readable string. Note that texts corresponding to each
of the status bits set are separated by a semi-colon (;)

3.2. Basic Device Functions

All of the following functions require you to identify a device by its USBIdx. These functions can also com-
monly return with PDLM_ERROR_USB_IOCTL_FAILED. This signals a severe, mostly unrecoverable USB
communication problem (e.g., connection lost). Should this occur, it is recommended to close and re-initiate
the connection to the device.

/* C/C++ */ int PDLM_OpenDevice (int USBIdx
 char *cSerNo);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*cSerNo B pointer to a string variable with a length of at least 8 characters

to hold the device’s serial number

Returns: PDLM_ERROR_WRONG_PARAMETER if the USBIdx is out of range [0..7]
PDLM_ERROR_DEVICE_BUSY_OR_BLOCKED if the device is busy (i.e. opened by

another program)
PDLM_ERROR_USB_INAPPROPRIATE_DEVICE if the given serial number doesn't

match the devices
PDLM_ERROR_USB_GET_DSCR_FAILED if USB descriptor couldn't be loaded
PDLM_ERROR_USBDRIVER_NO_MEMORY if driver gets out of memory
PDLM_ERROR_DEVICE_ALREADY_OPENED if the software tries to re-open a

device that is already opened
PDLM_ERROR_OPEN_DEVICE_FAILED if the driver couldn't get a valid

windows handle
PDLM_ERROR_USB_UNKNOWN_DEVICE if device is not a Taiko

Page 10

PicoQuant GmbH Taiko PDL M1 Programming Reference

Description: Exclusively opens the device associated with the given USBIdx. If cSerNo is empty, the
function returns the device’s serial number (e.g., "1234567"). Otherwise, the given and
device serial numbers are compared. An error is returned if they don’t match. Note that
cSerNo might undefined (empty) in case of an erroneous termination. When running in a
loop, consider re-initializing cSerNo each time.

/* C/C++ */ int PDLM_CloseDevice (int USBIdx);

Arguments: USBIdx I this is the USB index [valid range: 0..7]

Description: Closes the device associated with the given USBIdx.

/* C/C++ */ int PDLM_OpenGetSerNumAndClose (int USBIdx
 char *cSerNo);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*cSerNo B pointer to a string variable with a length of at least 8 characters

to hold the device’s serial number

Returns: PDLM_ERROR_WRONG_PARAMETER if the USBIdx is out of range [0..7]
PDLM_ERROR_DEVICE_BUSY_OR_BLOCKED if the device is busy (i.e. opened by

another program)
PDLM_ERROR_USB_INAPPROPRIATE_DEVICE if the given serial number doesn't

match the devices
PDLM_ERROR_USB_GET_DSCR_FAILED if USB descriptor couldn't be loaded
PDLM_ERROR_USBDRIVER_NO_MEMORY if driver gets out of memory
PDLM_ERROR_DEVICE_ALREADY_OPENED if the software tries to re-open a

device that is already opened
PDLM_ERROR_OPEN_DEVICE_FAILED if the driver couldn't get a valid

windows handle
PDLM_ERROR_USB_UNKNOWN_DEVICE if device is not a Taiko

Description: Non-exclusively opens the device associated with the given USBIdx. This function will
return a serial number even for blocked devices). If cSerNo is empty, the function returns the
device’s serial number (e.g., "1234567"). Otherwise, the given and device serial numbers are
compared. An error is returned if they don’t match. Note that cSerNo might undefined
(empty) in case of an erroneous termination. When running in a loop, consider re-initializing
cSerNo each time.

/* C/C++ */ int PDLM_SetExclusiveUI (int USBIdx
 uint32_t mode);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
mode I the desired UI access mode (see description for valid values)

Returns: PDLM_ERROR_ILLEGAL_VALUE if mode codes other than allowed are set

Description: Sets the UI access mode. if set to "PDLM_UI_COOPERATIVE", the user can change settings
directly on the device by using the push-dial (illuminated in green) while the calling applica-
tion is still running. In this mode, both the local and remote interfaces can effect changes. On
the other hand, setting the mode to "PDLM_UI_EXCLUSIVE", will restrict the ability to effect
changes to the calling application (i.e. local interface is disabled, as indicated by an unlit
push-dial).

Page 11

PicoQuant GmbH Taiko PDL M1 Programming Reference

Note: Setting the UI mode to "PDLM_UI_EXCLUSIVE" is a good way to ensure that the user
cannot interfere with the operation of your application (when no user interaction is intended).
However, make sure that you properly release the UI after the operation completes by setting
the mode to "PDLM_UI_COOPERATIVE". Not doing so might leave the Taiko locked state in
the exclusive mode, requiring turning the Taiko off and on again in the worst case.

/* C/C++ */ int PDLM_GetExclusiveUI (int USBIdx
 uint32_t *mode);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*mode O the desired UI access mode (see description for valid values)

Description: Reads out the current UI access mode state (either "PDLM_UI_COOPERATIVE" or
"PDLM_UI_EXCLUSIVE")

3.3. Device Information Functions

All of the following functions require you to identify a device by its USBIdx. These functions can also com-
monly return with PDLM_ERROR_USB_IOCTL_FAILED. This signals a severe, probably unrecoverable USB
communication issue (e.g., connection lost). Should this occur, it is recommended to close and re-initiate the
connection to the device.

/* C/C++ */ int PDLM_GetUSBStrDescriptor (int USBIdx
 char *Descr
 uint32_t uiBuffLen);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*Descr O pointer to a string variable for the string descriptor
uiBuffLen I maximum string buffer length to transmit

Returns: PDLM_ERROR_BUFFER_TOO_SMALL if the provided buffer is to small
PDLM_ERROR_USB_GET_DSCR_FAILED if USB descriptor couldn't be loaded

Description: Returns a string with concatenated USB string descriptors for the device associated to the
USBIdx, separated by a semi-colon (;).

/* C/C++ */ int PDLM_GetHardwareInfo (int USBIdx
 char *Infos
 uint32_t uiBuffLen);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*Infos O pointer to a string variable for the hardware information
uiBuffLen I maximum string buffer length to transmit

Returns: PDLM_ERROR_BUFFER_TOO_SMALL if the provided buffer is to small

Description: Returns a string containing the hardware info, as usually shown in the About box/Support info
texts. This information mainly identifies the hardware product type and version.

/* C/C++ */ int PDLM_CreateSupportRequestText (int USBIdx
 char *cPreamble
 char *cCallingSW
 uint32_t uiOptions
 uint32_t uiBuffLen
 char *cBuffer);

Page 12

PicoQuant GmbH Taiko PDL M1 Programming Reference

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*cPreamble I pointer to a string for the preamble text to include (e.g., open the

about box and refer to all text before "<snip>")
*cCallingSW I pointer to a string to identify the calling software to include (e.g.,

open the About box and refer to the paragraph "Calling Software")
uiOptions I bitset of options, that the caller can choose and combine from (see

description for values)
uiBuffLen I the maximum string buffer length to transmit
*cBuffer O pointer to a string variable to take the SupportRequestText

Returns: PDLM_ERROR_BUFFER_TOO_SMALL if the provided buffer is to small

Description: Generates a string containing common hardware, software, and environment information, as
can be usually found in the “About...” or the support information boxes. This sting contains all
relevant information about the device associated to the given USBIdx (including version
numbers, environment, feature and option lists). The output string can be customized via the
uiOptions bitset:

Name Bit Value Effect

PDLM_SUPREQ_OPT_NO_PREAMBLE 0x01 if included, the preamble will be suppressed

PDLM_SUPREQ_OPT_NO_TITLE 0x02 if included, the title will be suppressed

PDLM_SUPREQ_OPT_NO_CALLING_SW_INDENT 0x04 if included, the info on calling software will
not be indented

PDLM_SUPREQ_OPT_NO_SYSTEM_INFO 0x08 if included, the system info will be sup-
pressed

/* C/C++ */ int PDLM_GetFWVersion (int USBIdx
 char *Version
 uint32_t uiBuffLen);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*Version O pointer to a string variable for the firmware version
uiBuffLen I the maximum string buffer length to transmit

Returns: PDLM_ERROR_BUFFER_TOO_SMALL if the provided buffer is to small

Description: Reads out the firmware version of the device associated with the given USBIdx.

/* C/C++ */ int PDLM_GetFPGAVersion (int USBIdx
 char *Version
 uint32_t uiBuffLen);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*Version O pointer to a string variable for the firmware version
uiBuffLen I the maximum string buffer length to transmit

Returns: PDLM_ERROR_BUFFER_TOO_SMALL if the provided buffer is to small

Description: Reads out the firmware version of the device associated with the given USBIdx.

/* C/C++ */ int PDLM_GetDeviceData (int USBIdx
 TDeviceData *Data
 uint32_t size);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*Data O packed structure containing device information (see description for

detailed list)
size I size of the structure

Page 13

PicoQuant GmbH Taiko PDL M1 Programming Reference

Description: This function retruns some of the information that is also generated by the function
“PDLM_CreateSupportRequestText”, but as not yet formatted, raw data in a packed
structure. Use this function if you want to build up your own set of information on the device
in use.T The structure contains the following information:

Type Name Description

uint32_t SN Serial number

uint32_t ArtNo Article number

char Name[PDLM_DEV_STRING_LENGTH] Product name (e.g., “Taiko”)

char Type[PDLM_DEV_STRING_LENGTH] Product type (e.g., “PDL M1”)

char Date[PDLM_DEV_STRING_LENGTH] Date of manufacturing

char VersPCB[PDLM_DEV_STRING_LENGTH] PCB version number (e.g., “078.2005.0104”)

_TVersNum VersDev Version numbers for the device

uint16_t Major Major firmware version number

uint16_t Minor Minor firmware version number

char Notes[PDL_DEV_STRING_LENGTH] Version notes (e.g., “beat”, “pre-release”,
“release”)

3.4. Laser Head Information Functions

All of the following functions require you to identify a device by its USBIdx. These functions can also com-
monly return with PDLM_ERROR_USB_IOCTL_FAILED. This signals a severe, probably unrecoverable USB
communication issue (e.g., connection lost). Should this occur, it is recommended to close and re-initiate the
connection to the device. Furthermore, functions in this group all refer to a plugged-in laser head. A missing
head will result in an error return code.

/* C/C++ */ int PDLM_GetLHVersion (int USBIdx
 char *Version
 uint32_t uiBuffLen);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*Version O pointer to a string variable for the laser head version
uiBuffLen I the maximum string buffer length to transmit

Returns: PDLM_ERROR_BUFFER_TOO_SMALL if the provided buffer is too small

Description: This function provides the version number (as a string) of the laser head connected to the
device associated with the given USBIdx.

/* C/C++ */ int PDLM_GetLHData (int USBIdx
 TLaserData *pData

 uint32_t size);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*Data O packed structure containing laser head information (see description

for detailed list)
size I size of the structure

Description: Reads out detailed information about the laser head currently connected to the device asso-
ciated with the given USBIdx as a packed structure. The structure contains the following
information:

Page 14

PicoQuant GmbH Taiko PDL M1 Programming Reference

Type Name Description

uint32_t SN Serial number, as unsigned integer (not a string)

uint32_t Features Bitset summarizing the laser head features. Use
“PDLM_DecodeLHFeatures” to decode.

uint32_t FreqMin Minimum frequency for the laser head (in Hz).
Same information can be obtained via the function
“PDLM_GetFrequencyLimits”

uint32_t FreqMax Maximum frequency for the laser head (in Hz).
Same information can be obtained via the function
“PDLM_GetFrequencyLimits”

uint32_t CwPowerMax Maximum power for CW mode in µW (only for
information purposes; do not use in
calculations!)

uint32_t PulsePowerMax Maximum power for pulsed mode in µW (only for
information purposes; do not use in
calculations!)

uint16_t WavelengthNominal Nominal laser head wavelength (in 1/10 nm)

uint16_t CaseTempMax (: 10) Maximum case temperature (in 1/10 °C)
Note: shares the same uint16_t with the next
two named entries (bit masked)

uint16_t Protection (: 1) Laser protection classification:
0 → class 3; 1 → class 4

uint16_t CwCurrentPolarity (: 1) Indicates current polarity in CW mode:
0 → positive, 1 → negative
Note: not used for the Taiko PDL M1, reserved
for future use

uint16_t (: 4) Reserved for future use
Note: shares the same uint16_t with the
previous three entries (bit masked)

uint16_t LHTypeCtrlVoltage (: 12) Maximum driver voltage for this laser head in cV
(1 cV = 10 mV)

uint16_t (: 4) Reserved for future use
Note: shares the same uint16_t with the
previous entry (bit masked)

uint16_t LHMaxVoltage (:12) Maximum voltage for this individual laser head
diode in cV (1 cV = 10 mV)

uint16_t (: 4) Reserved for future use
Note: shares the same uint16_t with the
previous entry (bit masked)

uint16_t CurrentTEP12V Current consumption of TEP 12V power supply in
mA.
Note: currently not used for the Taiko PDL M1,
reserved for future devices

uint16_t laserType Identification label for the Taiko laser head type
(see Appendix 6.9 for a list of values)

TLHVersNumu
int16_t

laserVersion Structure of two uint16_t values, named major
and minor. Can be directly accessed by the
function “PDLM_GetLHVersion”

uint16_t calibratedWarrantHours Duration of the guaranteed validity of the laser
heads calibration data (in hours)

Page 15

PicoQuant GmbH Taiko PDL M1 Programming Reference

/* C/C++ */ int PDLM_GetLHInfo (int USBIdx
 TLaserInfo *pInfo
 uint32_t size);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*pInfo O packed structure containing laser head information in text form (see

description for detailed list)
size I size of the structure

Description: This function provides additional information (as text strings in a packed structure) about the
laser head connected to the device associated with the given USBIdx. The packed structure
contains the following data:

Type Name Description

char LType[PDLM_LDH_STRING_LENGTH] Designation of laser head (e.g., “LDH-IX-B-405”)

char date[PDLM_LDH_STRING_LENGTH] Date of manufacturing (format: yyyy-mm-dd)

char LClass[PDL_DEV_STRING_LENGTH] Laser Class that is applicable to this head (e.g.,
“3R”)

/* C/C++ */ int PDLM_GetLHFeatures (int USBIdx
 uint32_t *LHFeatures);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*LHFeatures O all laser head features as a bit encoded uint32_t value

Description: This function generates a bit encoded uint32_t value that contains all laser head features.
Checking that the connected head supports a specific feature can be done through masking
with a bit wise AND operation. For example: to check if the laser head supports “burst mode”,
you could run the following IF statement in C:

if ((*LHFeatures & PDLM_LHFEATURE_BURST_CAPABILITY) > 0) { ... }

Determining the type of installed intensity sensor could be done as follows:

iType = ((*LHFeatures & PDLM_LHFEATURE_INTENSITY_SENSOR_TYPE >> 24);

A list of valid PDLM_LHFEATURE_ values is given in Appendix 6.8.

3.5. Status and Error Information Functions

All of the following functions require you to identify a device by its USBIdx. These functions can also com-
monly return with PDLM_ERROR_USB_IOCTL_FAILED. This signals a severe, probably unrecoverable USB
communication issue (e.g., connection lost). Should this occur, it is recommended to close and re-initiate the
connection to the device.

/* C/C++ */ int PDLM_SetHWND (int USBIdx
 HWND hwnd);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
hwnd I the handle of the calling application’s main window

Returns: PDLM_ERROR_USB_REGNTFY_FAILED if registration fails
PDLM_ERROR_USB_INVALID_HANDLE if no valid USB handle could be obtained

Description: Transmits the handle of the message-loop-holding window (generally the main window of the
calling application) to the DLL. This enables the DLL to asynchronously post messages with
device feedback to the host software via windows messages.

Page 16

PicoQuant GmbH Taiko PDL M1 Programming Reference

The class of this window should implement and register handlers for messages that are
posted as notifications on several occasions. Sent notifications usually contain this window
handle, a message ID identifying the responsible event handler, a WPARAM-typed short
parameter named wParam, and a LPARAM-typed long parameter named lParam.

When the DLL posts one of the following notification messages, the USBIdx is included in
the wParam, while the lParam transmits the current status word (as uint32_t). Nine differ-
ent messages (all of type notification) are defined, see table below. Note that
WM_PDLM_BASE has always a value of 0x1200.

Name Value Status change trigger

WM_ON_PENDING_ERRORS WM_PDLM_BASE + 0x01 On 0 →1
PDLM_DEVSTATE_ERRORMSG_PENDI
NG

WM_ON_LOCKING_CHANGE WM_PDLM_BASE + 0x02 On any
PDLM_DEVSTATEMASK_LOCKED

WM_ON_LASERHEAD_CHANGE WM_PDLM_BASE + 0x03 On 0 → 1
PDLM_DEVSTATE_LASERHEAD_CHAN
GED

WM_ON_LASER_NOT_OPERATIONAL_
CHANGE

WM_PDLM_BASE + 0x04 On 0 → 1 or 1 → 0
PDLM_DEVSTATEMASK_LASER_NOT_
OPERATIONAL

WM_ON_DEVICE_NOT_OPERATIONAL
_CHANGE

WM_PDLM_BASE + 0x05 On 0 → 1 or 1 → 0
PDLM_DEVSTATEMASK_DEVICE_NOT
_OPERATIONAL

WM_ON_PARAMETER_CHANGE WM_PDLM_BASE + 0x07 On any
PDLM_DEVSTATE_PARAMETER_CHAN
GES_PENDING

WM_ON_EXCLUSIVE_UI_CHANGE WM_PDLM_BASE + 0x08 On any
PDLM_DEVSTATE_EXCLUSIVE_SW_O
P_GRANTED

WM_ON_WARNINGS_CHANGE WM_PDLM_BASE + 0x09 On any
PDLM_DEVSTATEMASK_ALL_WARNIN
GS

WM_ON_OTHER_STATES_CHANGE WM_PDLM_BASE + 0xFF On any other status changes

/* C/C++ */ int PDLM_GetSystemStatus (int USBIdx
 uint32_t *mode);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*state O pointer to an unsigned integer variable for the status code

Description: This function reads out the state code (bit-coded). Refer to the "Table of all assigned status
bits" in the Appendix 6.3 and 6.4 for a list of useful status bit masks.

/* C/C++ */ int PDLM_GetQueuedChanges (int USBIdx
 TTagValue *TagValList
 uint32_t *uiListLen);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*TagValList O pointer to a variable, holding a tag value list (array)
*uiListLen B pointer to an unsigned integer variable to enter the length

of the tag value list provided (max. number of elements). Upon
return, the number of transferred elements is accessable.

Returns: PDLM_ERROR_BUFFER_TOO_SMALL if the provided buffer is too small
PDLM_ERROR_DLL_MEMORY_ALLOCATION_ERROR if a memory allocation error occurred

Page 17

PicoQuant GmbH Taiko PDL M1 Programming Reference

Description: This function returns a list of all queued changes as an array (of TTagValue type) containing
the respective tags as well as their associated values.

Refer to the function “PDLM_GetTagValueList” for more details.

/* C/C++ */ int PDLM_GetTagValueList (int USBIdx
 uint32_t uiListLen
 PTagValue pTagValList);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
uiListLen I Number of elements to retrieve from in the list of tagged values
pTagValList B pointer to an array of TTagValue typed fields. initialize the fields with

the tags of the values to be retrieved and get the desired values
after return.

Returns: PDLM_ERROR_BUFFER_TOO_SMALL if the provided buffer is too small
PDLM_ERROR_DLL_MEMORY_ALLOCATION_ERROR if a memory allocation error occurred

Description: This function takes a pointer to an array of TTagValue typed fields, initialized with the tags
of the desired values as input templates and returns it filled with the current values associ-
ated with the tags.

TTagValue contains a field "Value" of TValueType, which is a union of various typed fields.
To interpret such a value, use the function "PDLM_GetTagDescription", which will provide
you with information on both base type and scaling of the value.

For example, if you work in pulsed mode and want to query the currently emitted optical
power, you could insert a template initialized with the tag "PDLM_TAG_PulsePower",
"PDLM_TAG_PulsePowerNanowatt" or "PDLM_TAG_PulsePowerPermille", depending
on desired kind of visualization and further processing. "PDLM_TAG_PulsePower" returns
the value as a float, scaled in Watt (W), while "PDLM_TAG_PulsePowerNanowatt" will
return it as an unsigned integer, scaled in nW. Using "PDLM_TAG_PulsePowerPermille"
will also yield an unsigned integer, but scaled in per mil (in relation to the maximum power).

/* C/C++ */ int PDLM_GetQueuedError (int USBIdx
 int *ErrCode);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
* ErrCode O pointer to an integer variable, returning the deepest error code

Description: If an error situation was not directly produced by a call to a function (e.g., laser head over-
heating), the situation is registered and an error code is queued. To signal that new elements
are the queue, the most significant bit is set in the status code ("PDLM_STATE_ERROR_MES-
SAGE_PENDING"). With this bit set, the user can get the queued codes by executing one or
multiple calls to this function. Each call returns the deepest code (FIFO), until the queue is
purged. Once the most recent error code element is retreived, the signaling status flag is
reset to 0.

/* C/C++ */ int PDLM_GetQueuedErrorString (int USBIdx
 int ErrCode
 char *ErrText);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
ErrCode I the error code, that has to be decoded
*ErrText O pointer to the output string buffer

Description: Decodes the give error code into a human-readable text string. Make sure that the ErrText
buffer can accommodate a number of characters that is at least equal to
PDLM_HW_ERRORSTRING_MAXLEN+1

Page 18

PicoQuant GmbH Taiko PDL M1 Programming Reference

3.6. Laser Locking Functions

All of the following functions require you to identify a device by its USBIdx. These functions can also com-
monly return with PDLM_ERROR_USB_IOCTL_FAILED. This signals a severe, probably unrecoverable USB
communication issue (e.g., connection lost). Should this occur, it is recommended to close and re-initiate the
connection to the device.

/* C/C++ */ int PDLM_GetLocked (int USBIdx
 uint32_t *Locked);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*Locked O pointer to an unsigned integer variable to return the locking state

Description: Returns the over-all locking state of the Taiko: PDLM_LASER_UNLOCKED (0) or
PDLM_LASER_LOCKED (1). Further information on why the laser is locked can be obtained by
inspecting the status code.

/* C/C++ */ int PDLM_SetSoftLock (int USBIdx
 uint32_t SoftLocked);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
SoftLocked I the desired soft locking state (boolean)

Description: Sets the soft locking state of the Taiko. Valid values are PDLM_LASER_UNLOCKED (0) or
PDLM_LASER_LOCKED (1)

/* C/C++ */ int PDLM_GetSoftLock (int USBIdx
 uint32_t *SoftLocked);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
SoftLocked O pointer to an unsigned integer variable to return the soft locking

state

Description: Returns the current soft locking state of the Taiko. Note that even if the value returned equals
PDLM_LASER_UNLOCKED, the Taiko might be locked for other reasons. In such a case,
make sure to inspect the status code to find out more.

3.7. Laser Emission Mode Functions

All of the following functions require you to identify a device by its USBIdx. These functions can also com-
monly return with PDLM_ERROR_USB_IOCTL_FAILED. This signals a severe, probably unrecoverable USB
communication issue (e.g., connection lost). Should this occur, it is recommended to close and re-initiate the
connection to the device.

/* C/C++ */ int PDLM_SetLaserMode (int USBIdx
 uint32_t mode);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
mode I the desired laser emission mode (see description for valid values)

Returns: PDLM_ERROR_FEATURE_NOT_AVAILABLE if the mode is not allowed for this type of
laser

PDLM_ERROR_ILLEGAL_VALUE if mode codes other than mentioned below
are set or if the mode is not allowed in cur-
rent trigger mode

Page 19

PicoQuant GmbH Taiko PDL M1 Programming Reference

Description: This function sets the laser emission mode. Depending on the connected laser head type,
some modes will not be available. Please note that laser heads cannot be switched to burst
mode as long as the device is triggered externally.

Note: after switching the laser emission mode, several other values will also be automatically
changed. These include the optical output power, which is set to the latest valid settings. The
Taiko always enforces safe operating values by applying the limits stored in the connected
laser head. For example, optical power in CW mode may be not suited or even totally out of
bounds for pulsed mode operation.

List of valid laser mode codes:

Mode Value Note

PDLM_LASER_MODE_CW 0x00000000 Continuous wave (CW) mode

PDLM_LASER_MODE_PULSE 0x00000001 Pulsed mode

PDLM_LASER_MODE_BURST 0x00000002 Burst mode

/* C/C++ */ int PDLM_GetLaserMode (int USBIdx
 uint32_t *mode);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*mode O pointer to an unsigned integer variable that returns the current laser

emission mode

Description: Use this function to query the current laser emission mode (for valid return values, see the
table in the description of “PDLM_SetLaserMode”.

/* C/C++ */ int PDLM_SetLDHPulsePowerTable (int USBIdx
 uint32_t TableIdx);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
TableIdx I code (index) of the desired pulse power table (see description for

valid values

Returns: PDLM_ERROR_FEATURE_NOT_AVAILABLE if TableIdx is equal to 1 and the connected
laser head does not support max. power
mode

PDLM_ERROR_ILLEGAL_VALUE if TableIdx is larger than 1

Description: This function sets the current pulse power table code. After changing the pulse power table,
you should perform a call to the “PDLM_GetPulsePowerLimits” function to get the power
range for the current frequency.

Note: after changing the pulse power table, the current power is set to zero for safety rea -
sons.

List of valid TableIdx codes:

TableIdx Value Description

PDLM_LDH_LINEAR_PULSE_TABLE 0 Linear power mode

PDLM_LDH_MAX_POWER_PULSE_TABLE 1 Max. power mode

/* C/C++ */ int PDLM_GetLDHPulsePowerTable (int USBIdx
 uint32_t *TableIdx);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
TableIdx O pointer to an unsigned integer variable returning the code (index) of

the currently set pulse power table

Page 20

PicoQuant GmbH Taiko PDL M1 Programming Reference

Description: Use this function to query the current pulse power table code. If this value changed, you
should perform a call to the PDLM_GetPulsePowerLimits function to get the power range
for the current frequency.

3.8. Triggering and Gating Functions

All of the following functions require you to identify a device by its USBIdx. These functions can also com-
monly return with PDLM_ERROR_USB_IOCTL_FAILED. This signals a severe, probably unrecoverable USB
communication issue (e.g., connection lost). Should this occur, it is recommended to close and re-initiate the
connection to the device.

/* C/C++ */ int PDLM_SetTriggerMode (int USBIdx
 uint32_t mode);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
mode I the code of the desired trigger mode (see description for valid val-

ues)

Returns: PDLM_ERROR_ILLEGAL_VALUE if mode has a value other than the allowed ones

Description: Sets the code of the desired trigger mode of the device. If trigger mode is set to one of the
external modes, the user should also set appropriate values for the trigger level

Note: when switching from internal to external triggering, the context of "intensity" changes.
Since the Taiko doesn’t "know" the characteristics of the external trigger signal, it can't go on
using a table-driven power linearization at a given frequency. Instead, the “intensity” control
switches over to controlling the diode voltage (internally called “PosVar”). The new range
goes from the lowest minimum voltage value recorded in the power tables of all frequencies
up to the maximum voltage allowed. This allows using a wider part of the lower range of the
per mil scale for driving the laser head in the sub-threshold (LED) domain than with internally
triggered pulses. The maximum, 1000 per mil, corresponds to a voltage that is set individually
for each head and is carefully chosen to prevent damage to it.

Table of valid trigger mode values:

Mode Value Device is...

PDLM_TRIGGER_INTERNAL 0x00000000 triggered internally

PDLM_TRIGGER_EXTERNAL_FALLING_EDGE 0x00000001 triggered externally on falling edge

PDLM_TRIGGER_EXTERNAL_RISING_EDGE 0x00000002 triggered externally on rising edge

/* C/C++ */ int PDLM_GetTriggerMode (int USBIdx
 uint32_t *mode);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*mode O pointer to an unsigned integer variable, returning the code of the

current trigger mode

Description: Reads out the current trigger mode of the device associated with the given USBIdx.

/* C/C++ */ int PDLM_GetTriggerLevelLimits (int USBIdx
 float *MinLevel
 float *MaxLevel);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*MinLevel O pointer to a float variable (single precision), returning the device's

trigger level lower limit in Volt
*MaxLevel O pointer to a float variable (single precision), returning the device's

trigger level upper limit in Volt

Page 21

PicoQuant GmbH Taiko PDL M1 Programming Reference

Description: This function reads out the lower and upper level limits of the external trigger signal in Volt.

/* C/C++ */ int PDLM_SetTriggerLevel (int USBIdx
 float Level);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
Level I the device's desired trigger level in Volt

Returns: PDLM_ERROR_ILLEGAL_VALUE if Level is outside of the limits

Description: Sets the external trigger level in Volt

/* C/C++ */ int PDLM_GetTriggerLevel (int USBIdx
 float *Level);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*Level O pointer to a float variable (single precision), returning the device's

current trigger level in Volt

Description: Reads out the current external trigger level in Volt.

/* C/C++ */ int PDLM_GetExtTriggerFrequency (int USBIdx
 uint32_t *ExtFreq);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*ExtFreq O pointer to an unsigned integer variable, returning the device's cur-

rent external trigger frequency in Hertz

Description: Gets the external trigger frequency in Hz. Note that a call to this function is not intended to
replace an actual frequency measurement. The value returned by this function provides a
rough idea (i.e. order of magnitude) of the external trigger signal's frequency. The base reso-
lution of the implemented counter is 80 Hz, so that is strongly recommended to trust only
readings, that are significantly higher than 8 kHz.

/* C/C++ */ int PDLM_SetFastGate (int USBIdx
 uint32_t mode);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
mode I the code of the desired fast gate mode (boolean)

Returns: PDLM_ERROR_ILLEGAL_VALUE if mode has a value other than the two allowed ones

Description: sets the code of the desired fast gate mode of the device. Valid values are PDLM_DISABLE
(0) and PDLM_ENABLE (1). If the fast gate mode is set to enabled, you should also set the
appropriate impedance for the fast gate.

/* C/C++ */ int PDLM_GetFastGate (int USBIdx
 uint32_t *mode);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*mode O pointer to an unsigned integer variable, returning the code of the

current fast gate mode

Description: Reads out the code of the fast gate mode of the device with the associated USBIdx. Valid
(boolean) values are: enabled (1) and disabled (0).

Page 22

PicoQuant GmbH Taiko PDL M1 Programming Reference

/* C/C++ */ int PDLM_SetFastGateImp (int USBIdx
 uint32_t mode);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
mode I the code of the desired fast gate impedance (see description for

valid values)

Returns: PDLM_ERROR_ILLEGAL_VALUE if mode has a value other than the two allowed ones

Description: Use this function to set the desired impedance for the fast gate input via the appropriate
code. Table with valid impedance codes:

Code Value Impedance

PDLM_GATEIMP_10k_OHM 0x00000000 High gating impedance (10k Ω)

PDLM_GATEIMP_50_OHM 0x00000001 Low gating impedance (50 Ω)

/* C/C++ */ int PDLM_GetFastGateImp (int USBIdx
 uint32_t *mode);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*mode O pointer to an unsigned integer variable, returning the code of the

current fast gate impedance

Description: Returns the code for the fast gate input impedance currently set for the device associated
with the given USBIdx.

/* C/C++ */ int PDLM_SetSlowGate (int USBIdx
 uint32_t mode);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
mode I the code of the desired slow gate mode (boolean)

Returns: PDLM_ERROR_ILLEGAL_VALUE if mode has a value other than the two allowed ones

Description: This function sets the slow gate mode of the device associated with the given USBIdx
depending on the provides code. Valid (boolean) codes are: enabled (1) and disabled (0).

/* C/C++ */ int PDLM_GetSlowGate (int USBIdx
 uint32_t *mode);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*mode O pointer to an unsigned integer variable, returning the code of the

current slow gate mode

Description: Reads out the code of the slow gate mode of the device associated with the given USBIdx.
Valid (boolean) values are: enabled (1) and disabled (0).

3.9. Pulse Frequency and Burst Setting Functions

All of the following functions require you to identify a device by its USBIdx. These functions can also com-
monly return with PDLM_ERROR_USB_IOCTL_FAILED. This signals a severe, probably unrecoverable USB
communication issue (e.g., connection lost). Should this occur, it is recommended to close and re-initiate the
connection to the device.

Page 23

PicoQuant GmbH Taiko PDL M1 Programming Reference

/* C/C++ */ int PDLM_GetFrequencyLimits (int USBIdx
 uint32_t *MinFreq
 uint32_t *MaxFreq);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*MinFreq O pointer to an unsigned integer variable, returning the device's

lower frequency limit in Hz
*MaxFreq O pointer to an unsigned integer variable, returning the device's

upper frequency limit frequency in Hz

Description: Calling this function returns the lower and upper pulse frequency limits of the laser head cur-
rently connected to the device associated with the given USBIdx.

Note: These frequency limits vary from laser head to laser head. It is recommended to call
this function every time a laser head change has occurred.

/* C/C++ */ int PDLM_SetFrequency (int USBIdx
 uint32_t freq);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
freq I the device’s desired base oscillator frequency in Hz

Returns: PDLM_ERROR_ILLEGAL_VALUE if freq is outside of the limits

Description: Use this function to set the base oscillator frequency (in Hz) of the device associated with the
given USBIdx. The pulse frequency of both pulsed and burst modes depend on this value.

/* C/C++ */ int PDLM_GetFrequency (int USBIdx
 uint32_t *freq);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*freq O pointer to an unsigned integer variable, returning the device’s

base oscillator frequency in Hz

Description: Reads out the current base oscillator frequency (in Hz) of the device associated with the
given USBIdx. The pulse frequency of both pulsed and burst modes depend on this value.

/* C/C++ */ int PDLM_SetBurst (int USBIdx
 uint32_t BurstLength
 uint32_t PeriodLength);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
BurstLength I the desired burst length, in pulses (see description for valid range)
PeriodLength I the desired period length, in pulses (see description for valid range)

Returns: PDLM_ERROR_ILLEGAL_VALUE if BurstLength or PeriodLength is outside of the
limits

Description: Use this function to write the burst definition. Note that the BurstLength and Peri-
odLength are defined in pulses. Limits are defined as follows:

 2 <= BurstLength < (2^24 - 1) = 16777215

(BurstLength + 1) <= PeriodLength <= 16777215

Although patterns with very long pulse pauses (long period length) can be defined, you
should look for alternative ways to implement the desired behavior, such as using external
triggering or gating. It can be hard to determine during a measurement whether the laser
driver is still working in a valid burst cycle or just shut off due to an error.

Page 24

PicoQuant GmbH Taiko PDL M1 Programming Reference

/* C/C++ */ int PDLM_GetBurst (int USBIdx
 uint32_t *BurstLength
 uint32_t *PeriodLength);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*BurstLength O pointer to an unsigned integer variable, returning the device’s burst

length in pulses
*PeriodLength O pointer to an unsigned integer variable, returning the device’s period

length in pulses

Description: Reads out the currently set burst definition (consisting of the two variables BurstLength
and PeriodLength.

3.10. Functions for Temperature Settings

All of the following functions require you to identify a device by its USBIdx. These functions can also com-
monly return with PDLM_ERROR_USB_IOCTL_FAILED. This signals a severe, probably unrecoverable USB
communication issue (e.g., connection lost). Should this occur, it is recommended to close and re-initiate the
connection to the device.

Note that many of these functions can be called with an arbitrary temperature scale ID code, that does not
need to match the currently set ScaleID of the device’s GUI. Keep in mind that all internal calculations and
settings are performed in °C (regardless of ScaleID setting). Rounding is done to tenths of a degree Celsius.
This might lead to some strange stepping and rounding effects when displaying the laser head temperature in
Fahrenheit units.

/* C/C++ */ int PDLM_SetTempScale (int USBIdx
 uint32_t ScaleID);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
ScaleID I the code of the desired temperature scale (see description for valid

values)

Returns: PDLM_ERROR_ILLEGAL_VALUE if ScaleID has a value other than the allowed ones

Description: This function sets the code for the temperature scale as currently used in the GUI of the
device associated with the given UBSIdx. Three ScaleID values are supported:

Code Name Notes

0 PDLM_TEMPERATURESCALE_CELSIUS Displays temperature in °C

1 PDLM_TEMPERATURESCALE_FAHRENHEIT Displays temperature in °F

2 PDLM_TEMPERATURESCALE_KELVIN Displays temperature in K

/* C/C++ */ int PDLM_GetTempScale (int USBIdx
 uint32_t *ScaleID);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
* ScaleID O pointer to an unsigned integer variable returning the code of the

temperature scale currently set

Description: Reads out the current temperature scale code (see the description of the function
“PDLM_SetTempScale” for a list of values).

/* C/C++ */ int PDLM_GetLHTargetTempLimits (int USBIdx
 uint32_t ScaleID
 float *MinTemp
 float *MaxTemp);

Page 25

PicoQuant GmbH Taiko PDL M1 Programming Reference

Arguments: USBIdx I this is the USB index [valid range: 0..7]
ScaleID I the code of the desired temperature scale (see description of

“PDLM_SetTempScale” for a list of valid values)
*MinTemp O pointer to a float variable returning the laser diode's target tempera-

ture lower limit, in units of the desired temperature scale.
*MaxTemp O pointer to a float variable returning the laser diode's target tempera-

ture upper limit, in units of the desired temperature scale.

Returns: PDLM_ERROR_ILLEGAL_VALUE if ScaleID has a value other than the allowed ones

Description: Reads out the minimum and maximum temperature limits stored in the laser head that is con-
nected to the device associated with the given USBIdx. The returned values are in units cor-
responding to the given ScaleID.

/* C/C++ */ int PDLM_SetLHTargetTemp (int USBIdx
 uint32_t ScaleID
 float TargTemp);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
ScaleID I the code of the desired temperature scale (see description of

“PDLM_SetTempScale” for a list of valid values)
TargTemp I the laser diode's desired target temperature in units of the desired

 temperature scale.

Returns: PDLM_ERROR_ILLEGAL_VALUE if ScaleID has a value other than the allowed ones

Description: Use this function to change the set-value for the temperature (in units corresponding to the
chosen ScaleID) of the laser diode connected to the device associated with the given
USBIdx.

/* C/C++ */ int PDLM_GetLHTargetTemp (int USBIdx
 uint32_t ScaleID
 float *TargTemp);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
ScaleID I the code of the desired temperature scale (see description of

“PDLM_SetTempScale” for a list of valid values)

*TargTemp O pointer to a float variable returning the laser diode's target tempera-
ture as currently set, in units of the desired temperature scale.

Returns: PDLM_ERROR_ILLEGAL_VALUE if ScaleID has a value other than the allowed ones

Description: Reads out the current set-value for the temperature (in units corresponding to the chosen
ScaleID) of the laser diode connected to the device associated with the given USBIdx.

/* C/C++ */ int PDLM_GetLHCurrentTemp (int USBIdx
 uint32_t ScaleID
 float *CurrTemp);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
ScaleID I the code of the desired temperature scale (see description of

“PDLM_SetTempScale” for a list of valid values)
*CurrTemp O pointer to a float variable returning the laser diode temperature as

currently measured, in units of the desired temperature scale.

Returns: PDLM_ERROR_ILLEGAL_VALUE if ScaleID has a value other than the allowed ones

Description: Reads out the current temperature (in units corresponding to the chosen ScaleID) of the
laser diode connected to the device associated with the given USBIdx.

Page 26

PicoQuant GmbH Taiko PDL M1 Programming Reference

/* C/C++ */ int PDLM_GetLHCaseTemp (int USBIdx
 uint32_t ScaleID
 float *CaseTemp);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
ScaleID I the code of the desired temperature scale (see description of

“PDLM_SetTempScale” for a list of valid values)
*CaseTemp O pointer to a float variable returning the case temperature as currently

set, in units of the desired temperature scale.

Returns: PDLM_ERROR_ILLEGAL_VALUE if ScaleID has a value other than the allowed ones

Description: Reads out the current temperature (in units corresponding to the chosen ScaleID) of the
laser diode housing.

/* C/C++ */ int PDLM_GetLHWavelength (int USBIdx
 float *Wavelength);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*Wavelength O pointer to a float variable (single precision), returning the laser

head's wavelength in nm

Description: Reads out the estimated temperature-shifted wavelength of the laser diode. Please note that
this is only an estimation based on the data obtained when the laser head was calibrated. It is
not the result of a direct wavelength measurement at the function call time.

Note: Wavelength tuning is an indirect result of temperature setting and requires the laser
head to support the feature “PDLM_LHFEATURE_WL_TUNABLE”. Therefore, only a “get” func-
tion is available.

3.11. Laser Head Functions for Pulse Power Settings

All of the following functions require you to identify a device by its USBIdx. These functions can also com-
monly return with PDLM_ERROR_USB_IOCTL_FAILED. This signals a severe, probably unrecoverable USB
communication issue (e.g., connection lost). Should this occur, it is recommended to close and re-initiate the
connection to the device.

The functions described in this section are setting or reading the optical output power in pulsed or burst
modes for the connected laser head (in various units of W or permille of the current maximum). Obviously,
the lower and upper limits (fMinPower and fMaxPower) will differ from one laser head to the next as well as
with any change of the LDH power table in use(see PDLM_SetLDHPulsePowerTable) or repetition rate. It
is therefore recommended to always read out the limits after a new head has been connected or after chang-
ing the power table index or the repetition rate.

Note: Even though it is tempting to always use absolute W values for power settings, this might cause some
issues. For a given laser head, a power setting of 0.15 W might be fine, while this value might be too high for
another. It is therefore recommended to use “per mille” settings (in relation to fMaxPower).

/* C/C++ */ int PDLM_GetPulsePowerLimits (int USBIdx
 float *fMinPower
 float *fMaxPower);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*fMinPower O pointer to a float variable returning the laser diode's lower power

limit (pulsed mode), in W.
*fMaxPower O pointer to a float variable returning the laser diode's upper power

limit (pulsed mode), in W.

Description: Reads out the minimum and maximum power limits in pulsed mode (in units of W) of the
laser diode currently connected to the device associated with the given USBIdx.

Page 27

PicoQuant GmbH Taiko PDL M1 Programming Reference

/* C/C++ */ int PDLM_SetPulsePower (int USBIdx
 float fPower);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
fPower I the desired optical output power (pulsed mode), in W

Returns: PDLM_ERROR_ILLEGAL_VALUE if fPower lies outside of the head’s valid range

Description: Sets the desired (in W, pulsed mode) optical output power of the laser diode connected to the
device associated with the given USBIdx.

/* C/C++ */ int PDLM_GetPulsePower (int USBIdx
 float *fPower);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*fPower O pointer to a float variable (single precision), returning the laser

optical output power (pulsed mode) in W

Description: Reads out the currently set optical output power (in W, pulsed mode) for the laser head con-
nected to the device associated with the given USBIdx.

/* C/C++ */ int PDLM_SetPulsePowerPermille (int USBIdx
 uint32_t permille);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
permille I the desired optical output power (pulsed mode) setting based on a

per mille (1/1000) setting of fMaxPower

Returns: PDLM_ERROR_ILLEGAL_VALUE if permille lies outside of the head’s valid range

Description: Sets the desired (in per mille of maximum power, pulsed mode) optical output power of the
laser diode connected to the device associated with the given USBIdx. Valid range for a per
mille is 0 to 1000, logically.

/* C/C++ */ int PDLM_GetPulsePowerPermille (int USBIdx
 uint32_t *permille);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*permille O pointer to an unsigned integer variable, returning the laser

doide's power setting (in pulsed mode) as a per mille of fMaxPower

Description: Reads out the currently set optical output power (as a per mille of fMaxPower, pulsed mode)
for the laser head connected to the device associated with the given USBIdx.

/* C/C++ */ int PDLM_SetPulsePowerNanowatt (int USBIdx
 uint32_t nanowatt);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
nanowatt I the desired optical output power (pulsed mode) setting in nW

Returns: PDLM_ERROR_ILLEGAL_VALUE if nanowatt lies outside of the head’s valid range

Description: Sets the desired (in nW, pulsed mode) optical output power of the laser diode connected to
the device associated with the given USBIdx. Note: use this function only if there is a strong
demand for integer arithmetics. Consider the rounding of the float value in W to whole nW
values.

/* C/C++ */ int PDLM_GetPulsePowerNanowatt (int USBIdx

Page 28

PicoQuant GmbH Taiko PDL M1 Programming Reference

 uint32_t *nanowatt);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*nanowatt O pointer to an unsigned integer variable, returning the laser

doide's power setting (pulsed mode) in nW

Description: Reads out the currently set optical output power (in nW, pulsed mode) for the laser head con-
nected to the device associated with the given USBIdx.

/* C/C++ */ int PDLM_GetPulseShape (int USBIdx
 uint32_t *shape);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*shape O pointer to an unsigned integer, returning a code describing the laser

pulse shape (see description for a list of values)

Description: Returns a code that describes the pulse shape regime the laser diode (connected to the
device associated with given USBIdx) operates in. Table of valid return values:

Value Description

0 Broadened pulse regime (due to high power settings)

1 Narrow pulse regime or “single pulse” (laser diode is operating at a pulse width corresponding to
its specification)

2 Sub-threshold (or “LED domain”). No lasing occurs, only spontaneous emission

3 Unknown pulse shape

3.12. Laser Head Functions for CW Power Settings

All of the following functions require you to identify a device by its USBIdx. These functions can also com-
monly return with PDLM_ERROR_USB_IOCTL_FAILED. This signals a severe, probably unrecoverable USB
communication issue (e.g., connection lost). Should this occur, it is recommended to close and re-initiate the
connection to the device.

The functions described in this section are setting or reading the optical output power in continuous wave
(CW) mode for the connected laser head (in various units of W or permille of the current maximum). Obvi-
ously, the lower and upper limits (MinPower and MaxPower) will differ from one laser head to the next. It is
therefore recommended to always read out the limits after a new head has been connected.

Note: even though it is tempting to always use absolute W values for power settings, this might cause some
issues. For a given laser head, a power setting of 0.15 W might be fine, while this value might be too high for
another. It is therefore recommended to use “per mille” settings (in relation to MaxPower).

/* C/C++ */ int PDLM_GetCwPowerLimits (int USBIdx
 float *MinPower
 float *MaxPower);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*MinPower O pointer to a float variable returning the laser diode's lower power

limit (CW mode), in W.
*MaxPower O pointer to a float variable returning the laser diode's upper power

limit (CW mode), in W.

Description: Reads out the minimum and maximum power limits in CW mode (in units of W) of the laser
diode currently connected to the device associated with the given USBIdx.

Page 29

PicoQuant GmbH Taiko PDL M1 Programming Reference

/* C/C++ */ int PDLM_SetCwPower (int USBIdx
 float fPower);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
fPower I the desired optical output power (CW mode), in W

Returns: PDLM_ERROR_ILLEGAL_VALUE if fPower lies outside of the head’s valid range

Description: Sets the desired (in W, CW mode) optical output power of the laser diode connected to the
device associated with the given USBIdx.

/* C/C++ */ int PDLM_GetCwPower (int USBIdx
 float *fPower);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*fPower O pointer to a float variable (single precision), returning the laser

optical output power (CW mode) in W

Description: Reads out the currently set optical output power (in W, CW mode) for the laser head con-
nected to the device associated with the given USBIdx.

/* C/C++ */ int PDLM_SetCwPowerPermille (int USBIdx
 uint32_t permille);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
permille I the desired optical output power (CW mode) setting based on a

per mille (1/1000) setting of fMaxPower

Returns: PDLM_ERROR_ILLEGAL_VALUE if permille lies outside of the head’s valid range

Description: Sets the desired (in per mille of maximum power, CW mode) optical output power of the laser
diode connected to the device associated with the given USBIdx. Valid range for a per mille
is 0 to 1000, logically.

/* C/C++ */ int PDLM_GetCwPowerPermille (int USBIdx
 uint32_t *permille);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*permille O pointer to an unsigned integer variable, returning the laser

doide's power setting (CW mode) as a per mille of fMaxPower

Description: Reads out the currently set optical output power (as a per mille of fMaxPower, CW mode)
for the laser head connected to the device associated with the given USBIdx.

/* C/C++ */ int PDLM_SetCwPowerMicrowatt (int USBIdx
 uint32_t microwatt);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
microwatt I the desired optical output power (CW mode) setting, in µW

Returns: PDLM_ERROR_ILLEGAL_VALUE if microwatt lies outside of the head’s valid range

Description: Sets the desired (in µW, CW mode) optical output power of the laser diode connected to the
device associated with the given USBIdx. Note: Use this function only if there is a strong
demand for integer arithmetics. Consider the rounding of the float value in w to µW values.

Page 30

PicoQuant GmbH Taiko PDL M1 Programming Reference

/* C/C++ */ int PDLM_GetCwPowerMicrowatt (int USBIdx
 uint32_t *microwatt);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*microwatt O pointer to an unsigned integer variable, returning the laser

doide's power setting (CW mode) in µW

Description: Reads out the currently set optical output power (in µW, CW mode) for the laser head con-
nected to the device associated with the given USBIdx.

3.13. Special Laser Head Functions

All of the following functions require you to identify a device by its USBIdx. These functions can also com-
monly return with PDLM_ERROR_USB_IOCTL_FAILED. This signals a severe, probably unrecoverable USB
communication issue (e.g., connection lost). Should this occur, it is recommended to close and re-initiate the
connection to the device.

/* C/C++ */ int PDLM_SetLHFan (int USBIdx
 uint32_t FanValue);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
FanValue I the desired fan operation mode (boolean)

Description: Set the fan operation mode (on/off) of the laser head connected to the device associated with
the given USBIdx. Valid modes are: disabled (0) / enable (1).

/* C/C++ */ int PDLM_GetLHFan (int USBIdx
 uint32_t *FanValue);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
*Fanvalue O pointer to an unsigned integer that returns the current operational

state of the laser head fan

Description: Reads out the current state of the laser head fan (enabled / disabled) that is connected to the
device associated with the given USBIdx.

3.14. Preset Functions

All of the following functions require you to identify a device by its USBIdx. These functions can also com-
monly return with PDLM_ERROR_USB_IOCTL_FAILED. This signals a severe, probably unrecoverable USB
communication issue (e.g., connection lost). Should this occur, it is recommended to close and re-initiate the
connection to the device.

/* C/C++ */ int PDLM_StorePreset (int USBIdx
 uint32_t PsIdx
 char *PsInfo
 uint32_t size);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
PsIdx I this is the preset index [valid range 1..9]
*PsInfo I An optional user-defined string to be stored along the preset values
size I length of the PsInfo string

Returns: PDLM_ERROR_ILLEGAL_INDEX if the preset index is out of range

Description: Calling this function stores the current device settings (including laser head serial number)
into the given preset slot (PsIdx). The optional variable PsInfo can hold a user-defined
string.

Page 31

PicoQuant GmbH Taiko PDL M1 Programming Reference

/* C/C++ */ int PDLM_GetPresetInfo (int USBIdx
 uint32_t PsIdx
 char *PsInfo
 uint32_t size);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
PsIdx I this is the preset index [valid range 1..9]
*PsInfo O pointer to a string where user-defined string that was stored along

with the preset values will be returned
size I length of the input buffer

Returns: PDLM_ERROR_ILLEGAL_INDEX if the preset index is out of range
PDLM_ERROR_BUFFER_TOO_SMALL if the buffer is too small

Description: This function returns a preview of the PsInfo string, without loading the whole preset. This
can be used to generate selection list, for example.

/* C/C++ */ int PDLM_GetPresetText (int USBIdx
 uint32_t PsIdx
 char *PsText
 uint32_t size);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
PsIdx I this is the preset index [valid range 1..9]
*PsText O pointer to a sting, returning a summary of the stored preset values

as a text string
size I length of the input buffer

Returns: PDLM_ERROR_ILLEGAL_INDEX if the preset index is out of range
PDLM_ERROR_BUFFER_TOO_SMALL if the buffer is too small

Description: This function returns a text string summarizing the stored preset values for the given PsIdx.

/* C/C++ */ int PDLM_RecallPreset (int USBIdx
 uint32_t PsIdx);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
PsIdx I this is the preset index [valid range 1..9]

Returns: PDLM_ERROR_ILLEGAL_INDEX if the preset index is out of range

Description: Recalls the preset values stored in the slot corresponding to PsIdx for the device associated
with the USBIdx. Note that the serial number of the connected laser head has to match the
one stored in the preset. If this is not the case, a run time error will be generated and the pre-
set will not be restored.

Additionally, this function call terminates successfully after a valid parameter has been
passed. The queued changes will occur after the call has ended. If errors occur during this
switching process, new run time errors will be generated that have to be captured.

Important: the recall function will overwrite any current settings irrevocably!

/* C/C++ */ int PDLM_ErasePreset (int USBIdx
 uint32_t PsIdx);

Arguments: USBIdx I this is the USB index [valid range: 0..7]
PsIdx I this is the preset index [valid range 1..9]

Returns: PDLM_ERROR_ILLEGAL_INDEX if the preset index is out of range

Description: Deletes all stored preset data in the slot corresponding to the PsIdx of the device associated
with the given USBIdx. Important: The erase function will delete any data existing in that slot
irrevocably!

Page 32

PicoQuant GmbH Taiko PDL M1 Programming Reference

4. Demonstration Programs
Please note that all of the demonstration code provided is correct to our best knowledge. However, it is pro -
vided “as is” with no warranties as to fitness for purpose. A link to the directory containing the demonstration
code and programs was created during the Taiko PDL M1 software installation. Click on that link to open this
folder in the Windows Explorer .

Two demos are currently included (a “simple” and a “complex” one) that aim to insights into some of the API’s
feature set. In order to keep the demo code concise and accessible, both application examples have a mini-
malistic text-based interface (using the Windows console for input and output).

The “simple” demo code is available for five languages, including C/C++, C#, Delphi, Python, and LabVIEW.
It is meant to highlight the tagged communication mode between laser driver and host application. After start -
ing the demo, it will connect to the Takio driver of your choice and read out it current status. Upon performing
any changes to intensity, repetition rate or temperature setting via the local interface (i.e. using the push dial),
the “simple” demo will notice these changes and update the display accordingly. Pressing “x” will end the
demo and release the Taiko.

The “complex” demo code is only available in Delphi and LabVIEW. This application will connect to a Taiko
and allow controlling it through a simple text-based interface. However, the LabVIEW “complex” demo pro-
vides no text-based menu and will only display information on changed done through the local interface
(demonstrating the use windows messages).

Follow the on-screen prompts to effect any desired changes. Note that the application can be closed by
pressing “x”. The application will the release the Taiko.

The demo programs illustrate the typical structure of a Taiko session:

• Get library version and check it comparing to system constant LIB_VERSION_REFERENCE
(optional)

• Open the device on the desired USB channel
(mandatory)

• Get firmware version and USB string descriptors (just for information and service purposes)
(optional)

• Get last error detected by firmware and decode it if necessary
(optional)

• Insert implementation of your desired behavior here
…
…

• Close the device to release it

(mandatory)

Page 33

PicoQuant GmbH Taiko PDL M1 Programming Reference

5. Legal Terms

5.1. Copyright

Copyright of this manual and on-line documentation belongs to PicoQuant GmbH. No parts of it may be
reproduced, translated, or transferred to third parties without written permission of PicoQuant

5.2. Trademarks

Other products and corporate names appearing in this manual may or may not be registered trademarks or
subject to copyrights of their respective owners. PicoQuant GmbH claims no rights to any such trademarks.
They are used here only for the purposes of identification or explanation and to the owner’s benefit, without
intent to infringe.

Page 34

PicoQuant GmbH Taiko PDL M1 Programming Reference

6. Appendix

6.1. Table of Common Constants

Constant Name Length

PDLM_LIBVERSION_MAXLEN 12

PDLM_USB_INDEX_MIN 0

PDLM_USB_INDEX_MAX 7

PDLM_MAX_USBDEVICES 8

PDLM_HW_ERRORSTRING_MAXLEN 47

PDLM_HW_INFO_MAXLEN 36

PDLM_DEV_STRING_LENGTH 16

PDLM_LDH_STRING_LENGTH 16

6.2. Table of Return / Error Codes

Note: A human-readable error string can be queried for each error code by calling the function
“PDLM_DecodeError”.

Important: A number of error numbers do exist between “PDLM_ERROR_HW_ERROR_OFFSET” and
“PDLM_ERROR_HW_MAX_ERROR_NUM”. These are not listed here as they are dependent on the hardware
version. However, these error numbers can still be decoded by using the function “PDLM_DecodeError”.

Error String Error Code

PDLM_ERROR_NONE 0

PDLM_ERROR_DEVICE_NOT_FOUND -1

PDLM_ERROR_NOT_CONNECTED -2

PDLM_ERROR_ALREADY_CONNECTED -3

PDLM_ERROR_WRONG_USBIDX -4

PDLM_ERROR_ILLEGAL_INDEX -5

PDLM_ERROR_ILLEGAL_VALUE -6

PDLM_ERROR_USB_MSG_INTEGRITY_VIOLATED -7

PDLM_ERROR_ILLEGAL_NODEINDEX -8

PDLM_ERROR_WRONG_PARAMETER -9

PDLM_ERROR_INCOMPATIBLE_FW -10

PDLM_ERROR_WRONG_SERIALNUMBER -11

PDLM_ERROR_WRONG_PRODUCTMODEL -12

PDLM_ERROR_BUFFER_TOO_SMALL -13

PDLM_ERROR_INDEX_NOT_FOUND -14

PDLM_ERROR_FW_MEMORY_ALLOCATION_ERROR -15

PDLM_ERROR_FREQUENCY_TOO_HIGH -16

PDLM_ERROR_DEVICE_BUSY_OR_BLOCKED -17

PDLM_ERROR_USB_INAPPROPRIATE_DEVICE -18

PDLM_ERROR_USB_GET_DSCR_FAILED -19

Page 35

PicoQuant GmbH Taiko PDL M1 Programming Reference

Error String Error Code

PDLM_ERROR_USB_INVALID_HANDLE -20

PDLM_ERROR_USB_INVALID_DSCRBUF -21

PDLM_ERROR_USB_IOCTL_FAILED -22

PDLM_ERROR_USB_VCMD_FAILED -23

PDLM_ERROR_USB_NO_SUCH_PIPE -24

PDLM_ERROR_USB_REGNTFY_FAILED -25

PDLM_ERROR_USBDRIVER_NO_MEMORY -26

PDLM_ERROR_DEVICE_ALREADY_OPENED -27

PDLM_ERROR_OPEN_DEVICE_FAILED -28

PDLM_ERROR_USB_UNKNOWN_DEVICE -29

PDLM_ERROR_EMPTY_QUEUE -30

PDLM_ERROR_FEATURE_NOT_AVAILABLE -31

PDLM_ERROR_UNINITIALIZED_DATA -32

PDLM_ERROR_DLL_MEMORY_ALLOCATION_ERROR -33

PDLM_ERROR_UNKNOWN_TAG -34

PDLM_ERROR_OPEN_FILE -35

PDLM_ERROR_FW_FOOTER -36

PDLM_ERROR_FIRMWARE_UPDATE -37

PDLM_ERROR_FIRMWARE_UPDATE_RUNNING -38

PDLM_ERROR_INCOMPATIBLE_HARDWARE -39

PDLM_ERROR_VALUE_NOT_AVAILABLE -40

PDLM_ERROR_USB_SET_TIMED_OUT -41

PDLM_ERROR_USB_GET_TIMED_OUT -42

PDLM_ERROR_USB_SET_FAILED -43

PDLM_ERROR_USB_GET_FAILED -44

PDLM_ERROR_USB_DATA_SIZE_TOO_BIG -45

PDLM_ERROR_FW_VERSION_CHECK -46

PDLM_ERROR_WRONG_DRIVER -47

PDLM_ERROR_WINUSB_STORED_ERROR -48

PDLM_ERROR_UNKNOWN_ERRORCODE -999

PDLM_ERROR_HW_ERROR_OFFSET -1000

PDLM_ERROR_HW_MAX_ERROR_NUM -2999

PDLM_ERROR_FUNCTION_IS_PQ_INTERNAL -9000

PDLM_ERROR_FUNCTION_NOT_IMPLEMENTED_YET -9999

Page 36

PicoQuant GmbH Taiko PDL M1 Programming Reference

6.3. Table of Assigned Status Bits

String Bit Code Description

PDLM_DEVSTATE_INITIALIZING 0x00000001 Device is initializing during boot up

PDLM_DEVSTATE_DEVICE_UNCALIBRATED 0x00000002 If the device has no valid data in
eeprom

PDLM_DEVSTATE_COMMISSIONING_MODE 0x00000004 During commissioning. All errors
coming from device/laserhead are
ignored

PDLM_DEVSTATE_LASERHEAD_SAFETY_MODE 0x00000008 Laser head safety mode

PDLM_DEVSTATE_FW_UPDATE_RUNNING 0x00000010 Firmware update is in progress

PDLM_DEVSTATE_DEVICE_DEFECT 0x00000020 At least one part of the device
hardware is defective

PDLM_DEVSTATE_DEVICE_INCOMPATIBLE 0x00000040 The firmware cannot control the
read device version

PDLM_DEVSTATE_BUSY 0x00000080 Device is busy during costly
calculations, etc

PDLM_DEVSTATE_EXCLUSIVE_SW_OP_GRANTED 0x00000100 Only the host software can
manipulate the device

PDLM_DEVSTATE_PARAMETER_CHANGES_PENDING 0x00000200 At least one parameter of the
device has changed

PDLM_DEVSTATE_LASERHEAD_CHANGED 0x00000800 When a new laser head was
connected

PDLM_DEVSTATE_LASERHEAD_MISSING 0x00001000 No laser head connected

PDLM_DEVSTATE_LASERHEAD_DEFECT 0x00002000 Laser head defective

PDLM_DEVSTATE_LASERHEAD_UNKNOWN_TYPE 0x00004000 The laser type cannot be controlled
by the laser driver

PDLM_DEVSTATE_LASERHEAD_DECALIBRATED 0x00008000 Laser head calibration expired, data
may no longer be valid

PDLM_DEVSTATE_LASERHEAD_DIODE_TEMP_TOO_L
OW

0x00010000 Laser head temperature is below
set point

PDLM_DEVSTATE_LASERHEAD_DIODE_TEMP_TOO_H
IGH

0x00020000 Laser head temperature is above
set point

PDLM_DEVSTATE_LASERHEAD_DIODE_OVERHEATIN
G

0x00040000 Laser head diode overheated

PDLM_DEVSTATE_LASERHEAD_CASE_OVERHEATING 0x00080000 Laser head case overheated

PDLM_DEVSTATE_LASERHEAD_FAN_RUNNING 0x00100000 Laser head fan is running

PDLM_DEVSTATE_LASERHEAD_INCOMPATIBLE 0x00200000 The firmware cannot control the
laser version read

PDLM_DEVSTATE_LOCKED_BY_EXPIRED_DEMO_MOD
E

0x00400000 Laser will be locked when demo
mode expired

PDLM_DEVSTATE_LOCKED_BY_ON_OFF_BUTTON 0x00800000 Laser was off by On/Off button

PDLM_DEVSTATE_SOFTLOCK 0x01000000 Laser was turned off by host
software

PDLM_DEVSTATE_KEYLOCK 0x02000000 Laser is off by keylock

PDLM_DEVSTATE_LOCKED_BY_SECURITY_POLICY 0x04000000 Laser is off due to Laser Class IV -
rules

Page 37

PicoQuant GmbH Taiko PDL M1 Programming Reference

String Bit Code Description

PDLM_DEVSTATE_INTERLOCK 0x08000000 Laser is off because interlock is
unplugged

PDLM_DEVSTATE_LASERHEAD_PULSE_POWER_INAC
CURATE

0x10000000 Laser temperature differs from what
it was calibrated on

PDLM_DEVSTATE_ERRORMSG_PENDING 0x80000000 Error message pending in error
queue, not laser head related

Page 38

PicoQuant GmbH Taiko PDL M1 Programming Reference

6.4. Table of Useful Status Masks

These are semantic groups of more than one status bit with their associated notification conditions.

States / Statemasks Bit Pattern Results on Changes

PDLM_DEVSTATEMASK_DEVICE_NOT_OPERATIONAL
= (PDLM_DEVSTATE_INITIALIZING
 | PDLM_DEVSTATE_FW_UPDATE_RUNNING
 | PDLM_DEVSTATE_DEVICE_DEFECT
 | PDLM_DEVSTATE_DEVICE_INCOMPATIBLE
)

0x00000071 fires notification "WM_ON_DEVICE_NOT_OPERATIONAL_CHANGE"
 if changing from 0 to (>0)
 or from (>0) to 0
 but not from (>0) to another value (>0)

 PDLM_DEVSTATE_EXCLUSIVE_SW_OP_GRANTED 0x00000100 fires notification "WM_ON_EXCLUSIVE_UI_CHANGE"
 on any change

 PDLM_DEVSTATE_PARAMETER_CHANGES_PENDING 0x00000200 fires notification "WM_ON_PARAMETER_CHANGE"
 if changing from 0 to (>0)

 PDLM_DEVSTATE_LASERHEAD_CHANGED 0x00000800 fires notification "WM_ON_LASERHEAD_CHANGE"
 if changing from 0 to (>0)

PDLM_DEVSTATEMASK_LASER_NOT_OPERATIONAL
= (PDLM_DEVSTATE_LASERHEAD_SAFETY_MODE
 | PDLM_DEVSTATE_LASERHEAD_MISSING
 | PDLM_DEVSTATE_LASERHEAD_DEFECT
 | PDLM_DEVSTATE_LASERHEAD_UNKNOWN_TYPE
 | PDLM_DEVSTATE_LASERHEAD_DIODE_OVERHEATING
 | PDLM_DEVSTATE_LASERHEAD_CASE_OVERHEATING
 | PDLM_DEVSTATE_LASERHEAD_INCOMPATIBLE
)

0x002C7008 fires notification "WM_ON_LASER_NOT_OPERATIONAL_CHANGE"
 if changing from 0 to (>0)
 or from (>0) to 0
 but not from (>0) to another value (>0)

PDLM_DEVSTATEMASK_LOCKED
= (PDLM_DEVSTATE_LOCKED_BY_EXPIRED_DEMO_MODE
 | PDLM_DEVSTATE_LOCKED_BY_ON_OFF_BUTTON
 | PDLM_DEVSTATE_SOFTLOCK
 | PDLM_DEVSTATE_KEYLOCK
 | PDLM_DEVSTATE_LOCKED_BY_SECURITY_POLICY
 | PDLM_DEVSTATE_INTERLOCK
)

0x0FC00000 fires notification "WM_ON_LOCKING_CHANGE"
 on any change

Page 39

PicoQuant GmbH Taiko PDL M1 Programming Reference

States / Statemasks Bit Pattern Results on Changes

 PDLM_DEVSTATE_ERRORMSG_PENDING 0x80000000 fires notification "WM_ON_PENDING_ERRORS"
 if changing from 0 to (>0)

PDLM_DEVSTATEMASK_WARNINGS_ONLY
= (PDLM_DEVSTATE_DEVICE_UNCALIBRATED
 | PDLM_DEVSTATE_LASERHEAD_DECALIBRATED
 | PDLM_DEVSTATE_LASERHEAD_PULSE_POWER_INACCURATE
)

0x10008002 a notification will be fired together with other flags,
 see below: PDLM_DEVSTATEMASK_ALL_WARNINGS

PDLM_DEVSTATEMASK_UNHANDLED
= (PDLM_DEVSTATE_COMMISSIONING_MODE
 | PDLM_DEVSTATE_BUSY
 | PDLM_DEVSTATE_LASERHEAD_DIODE_TEMP_TOO_LOW
 | PDLM_DEVSTATE_LASERHEAD_DIODE_TEMP_TOO_HIGH
 | PDLM_DEVSTATE_LASERHEAD_FAN_RUNNING
)

0x00130084 fires notification "WM_ON_OTHER_STATES_CHANGE"
 on any change

PDLM_DEVSTATEMASK_ILLEGAL_STATES 0x60000400 these state flags (unused dummys) are always ignored

0xFFFFFFFF

PDLM_DEVSTATEMASK_ALL_WARNINGS
= (PDLM_DEVSTATE_DEVICE_UNCALIBRATED
 | PDLM_DEVSTATE_COMMISSIONING_MODE
 | PDLM_DEVSTATE_LASERHEAD_SAFETY_MODE
 | PDLM_DEVSTATE_FW_UPDATE_RUNNING
 | PDLM_DEVSTATE_DEVICE_DEFECT
 | PDLM_DEVSTATE_DEVICE_INCOMPATIBLE
 | PDLM_DEVSTATE_LASERHEAD_DEFECT
 | PDLM_DEVSTATE_LASERHEAD_UNKNOWN_TYPE
 | PDLM_DEVSTATE_LASERHEAD_DECALIBRATED
 | PDLM_DEVSTATE_LASERHEAD_DIODE_OVERHEATING
 | PDLM_DEVSTATE_LASERHEAD_CASE_OVERHEATING
 | PDLM_DEVSTATE_LASERHEAD_INCOMPATIBLE
 | PDLM_DEVSTATE_LOCKED_BY_EXPIRED_DEMO_MODE
 | PDLM_DEVSTATE_LASERHEAD_PULSE_POWER_INACCURATE
)

0x106CE07E fires notification "WM_ON_WARNINGS_CHANGE"
 on any change; All Flags produce "!"-Warnings, except:

this one produces a "C"-Warning

this one produces an "i"-Warning

Page 40

PicoQuant GmbH Taiko PDL M1 Programming Reference

States / Statemasks Bit Pattern Results on Changes

PDLM_DEVSTATEMASK_LASERHEAD_STATUS_FLAGS
= (PDLM_DEVSTATE_LASERHEAD_SAFETY_MODE
 | PDLM_DEVSTATE_LASERHEAD_CHANGED
 | PDLM_DEVSTATE_LASERHEAD_DEFECT
 | PDLM_DEVSTATE_LASERHEAD_UNKNOWN_TYPE
 | PDLM_DEVSTATE_LASERHEAD_DECALIBRATED
 | PDLM_DEVSTATE_LASERHEAD_DIODE_TEMP_TOO_LOW
 | PDLM_DEVSTATE_LASERHEAD_DIODE_TEMP_TOO_HIGH
 | PDLM_DEVSTATE_LASERHEAD_DIODE_OVERHEATING
 | PDLM_DEVSTATE_LASERHEAD_CASE_OVERHEATING
 | PDLM_DEVSTATE_LASERHEAD_FAN_RUNNING
 | PDLM_DEVSTATE_LASERHEAD_INCOMPATIBLE
 | PDLM_DEVSTATE_LOCKED_BY_EXPIRED_DEMO_MODE
 | PDLM_DEVSTATE_LOCKED_BY_SECURITY_POLICY
)

0x047FE808 If a laser head is disconnected, all laser head related
flags are reset (with the exception of
PDLM_DEVSTATE_LASERHEAD_MISSING)

Page 41

PicoQuant GmbH Taiko PDL M1 Programming Reference

6.5. Table of Declared Tag Types

Tag Code Notes

PDLM_TAGTYPE_BOOL 0x00000001

PDLM_TAGTYPE_UINT 0x00010001

PDLM_TAGTYPE_UINT_ENUM 0x00010002 for list-driven values

PDLM_TAGTYPE_UINT_DAC 0x00010003 for any directly given raw DAC value

PDLM_TAGTYPE_UINT_IN_TENTH 0x00010101 for temperatures in tenth of a celsius
degree

PDLM_TAGTYPE_UINT_IN_PERCENT 0x00010201 for (positive only values of) milli
Volts, milli Watts, etc.

PDLM_TAGTYPE_UINT_IN_PERMILLE 0x00010301 for permille values in power or
current interpolation tables

PDLM_TAGTYPE_UINT_IN_PERTHOUSAND 0x00010302 for (positive only) milli Volts, milli
Watts, etc.

PDLM_TAGTYPE_UINT_IN_PERMYRIAD 0x00010401 for current interpolation tables (a
hundredth of a percent)

PDLM_TAGTYPE_UINT_IN_PERMILLION 0x00010601 for cw power values in 10-6 Watt =
µW

PDLM_TAGTYPE_UINT_IN_PERBILLION 0x00010901 for pulse power values in 10-9 Watt =
nW

PDLM_TAGTYPE_UINT_IN_PERTRILLION 0x00010C01 for wavelength values in 10-12 m =
pm

PDLM_TAGTYPE_UINT_IN_PERQUADTRILLION 0x00010F01 for pulse energy values in 10-15
joules = femto joule

PDLM_TAGTYPE_INT 0x00110001

PDLM_TAGTYPE_INT_IN_PERTHOUSAND 0x00110302 for (negative values included) milli
Volts, etc.

PDLM_TAGTYPE_SINGLE 0x01000001

PDLM_TAGTYPE_VOID 0xFFFFFFFF

6.6. Table of Documented Tags

Please note that more tags have been defined for internal use only. These are not listed in this table. Current
PDLM_TAG_COUNT is 54. This number and list of tags is subject to change without notification.

Tag Code Notes

PDLM_TAG_NONE 0x00000000

PDLM_TAG_LaserMode 0x00000020

PDLM_TAG_LDH_PulsePowerTable 0x00000021

PDLM_TAG_TriggerMode 0x00000030

PDLM_TAG_TriggerLevelRaw 0x00000040 in DAC steps

PDLM_TAG_TriggerLevelRawLoLimit 0x00000041 in DAC steps

PDLM_TAG_TriggerLevelRawHiLimit 0x00000042 in DAC steps

PDLM_TAG_TriggerLevel 0x00000048 in V

PDLM_TAG_TriggerLevelLoLimit 0x00000049 in V

Page 42

PicoQuant GmbH Taiko PDL M1 Programming Reference

Tag Code Notes

PDLM_TAG_TriggerLevelHiLimit 0x0000004A in V

PDLM_TAG_FastGate 0x00000050

PDLM_TAG_FastGateImp 0x00000060

PDLM_TAG_SlowGate 0x00000070

the temperatures passed along with
the following tags are ambiguous!
Units depend on current
TempScale value

PDLM_TAG_TargetTempRaw 0x00000090 in tenth of a Celsius degree

PDLM_TAG_TargetTempRawLoLimit 0x00000091 in tenth of a Celsius degree

PDLM_TAG_TargetTempRawHiLimit 0x00000092 in tenth of a Celsius degree

PDLM_TAG_CurrentTempRaw 0x00000094 in tenth of a Celsius degree

PDLM_TAG_CaseTempRaw 0x00000095 in tenth of a Celsius degree

PDLM_TAG_TargetTemp 0x00000098 in arbitrary temperature units

PDLM_TAG_TargetTempLoLimit 0x00000099 in arbitrary temperature units

PDLM_TAG_TargetTempHiLimit 0x0000009A in arbitrary temperature units

PDLM_TAG_CurrentTemp 0x0000009C in arbitrary temperature units

PDLM_TAG_CaseTemp 0x0000009D in arbitrary temperature units

PDLM_TAG_TempScale 0x0000009F identifies temperature unit currently
in use

PDLM_TAG_Frequency 0x000000A8 in Hz

PDLM_TAG_FrequencyLoLimit 0x000000A9 in Hz

PDLM_TAG_FrequencyHiLimit 0x000000AA in Hz

PDLM_TAG_PulsePowerPermille 0x000000B4

PDLM_TAG_PulseShape 0x000000B5

PDLM_TAG_PulsePower 0x000000B8 in W

PDLM_TAG_PulsePowerLoLimit 0x000000B9 in W

PDLM_TAG_PulsePowerHiLimit 0x000000BA in W

PDLM_TAG_PulsePowerNanowatt 0x000000BC in nW

PDLM_TAG_PulsePowerVoltage 0x000000BE In mV

PDLM_TAG_PulseEnergy 0x000000BF in fJ

PDLM_TAG_CwPowerPermille 0x000000C4

PDLM_TAG_CwPower 0x000000C8 in W

PDLM_TAG_CwPowerLoLimit 0x000000C9 in W

PDLM_TAG_CwPowerHiLimit 0x000000CA in W

PDLM_TAG_CwPowerMicroWatt 0x000000CC in µW

Page 43

PicoQuant GmbH Taiko PDL M1 Programming Reference

Tag Code Notes

PDLM_TAG_BurstLen 0x000000D0

PDLM_TAG_BurstPeriod 0x000000E0

PDLM_TAG_LDH_Fan 0x000000F0 is also published by status flag

PDLM_TAG_UI_Exclusive 0x00000100 is also published by status flag

6.7. Table of Supported Temperature Scales

Temperature Scale Name Value

PDLM_TEMPERATURESCALE_CELSIUS 0x00000000

PDLM_TEMPERATURESCALE_FAHRENHEIT 0x00000001

PDLM_TEMPERATURESCALE_KELVIN 0x00000002

6.8. Table of Laser Head Feature Bits

These are used for both the Features field of the structure laserData_t and for the function
“PDLM_GetLHFeatures”. Note that there is one more feature bit, that is implicitly always set:
“PDLM_LHFEATURE_PULSE_CAPABILITY”, as all LDH-I laser heads are pulsed ones.

Feature Name Bit Code Notes

PDLM_LHFEATURE_CW_CAPABILITY 0x00000001 Is set if laser head supports cw
operation mode

PDLM_LHFEATURE_PULSE_MAXPOWER 0x00000002

PDLM_LHFEATURE_BURST_CAPABILITY 0x00000010 Is set if laser head supports
burst mode

PDLM_LHFEATURE_EXTERNAL_TRIGGERABLE_BURSTS 0x00000040 Is set if laser head supports
external triggering of bursts

PDLM_LHFEATURE_EXTERNAL_TRIGGERABLE_PULSES 0x00000080 Is set if laser head supports
external triggering of pulses

PDLM_LHFEATURE_WL_TUNABLE 0x00000100 Is set if laser head includes
calibrated data for temperature-
dependent wavelength shifts

PDLM_LHFEATURE_COOLING_FAN 0x00010000 Is set if laser head features a
cooling fan

PDLM_LHFEATURE_SWITCHABLE_FAN 0x00020000 Is set if the cooling fan can be
switched on/off

PDLM_LHFEATURE_INTENSITY_SENSOR_TYPE 0x0F000000 Contains four bits that encode
the type of the intensity sensor

6.9. Table of Laser Head Types

These can be found in the field laserType of the structure laserData_t.

Name Code Description

LASER_TYPE_UNDEFINED 0x0000

LASER_TYPE_LDH 0x0010 Laser diode

Page 44

PicoQuant GmbH Taiko PDL M1 Programming Reference

Name Code Description

LASER_TYPE_LDH_FSL 0x0018 Laser diode with Fast Switched Laser mode, implemented via
fast gate

LASER_TYPE_LED 0x0020 only spontaneous LED emission (no lasing!)

LASER_TYPE_TA_SHG 0x0030 With tapered fiber amplifier and second harmonic generation

LASER_TYPE_FIBER 0x0040 Fiber

LASER_TYPE_FIBER_FSL 0x0048 Fiber with Fast Switched Laser mode

LASER_TYPE_FA 0x0050 Fiber amplifier

LASER_TYPE_FA_SHG 0x0060 Fiber amplifier with second harmonic generation

LASER_TYPE_BRIDGE 0x00F0 Bridge for older generation laser heads

6.10. Index

PDLM_CloseDevice.. 11

PDLM_CreateSupportRequestText...12

PDLM_DecodeError.. 5, 9, 36

PDLM_DecodeLHFeatures... 9, 15

PDLM_DecodePulseShape..9

PDLM_DecodeSystemStatus..10

PDLM_ErasePreset.. 33

PDLM_GetBurst.. 25

PDLM_GetCwPower... 30

PDLM_GetCwPowerLimits..29

PDLM_GetCwPowerMicrowatt..31

PDLM_GetCwPowerPermille..30

PDLM_GetDeviceData.. 13

PDLM_GetExclusiveUI... 12

PDLM_GetExtTriggerFrequency...22

PDLM_GetFastGate... 22

PDLM_GetFastGateImp.. 23

PDLM_GetFPGAVersion.. 13

PDLM_GetFrequency... 24

PDLM_GetFrequencyLimits..15, 24

PDLM_GetFWVersion... 13

PDLM_GetHardwareInfo... 12

PDLM_GetLaserMode.. 20

PDLM_GetLDHPulsePowerTable...21

PDLM_GetLHCaseTemp.. 27

PDLM_GetLHCurrentTemp...26

PDLM_GetLHData.. 14

PDLM_GetLHFan... 31

PDLM_GetLHFeatures... 16

PDLM_GetLHInfo.. 16

Page 45

PicoQuant GmbH Taiko PDL M1 Programming Reference

PDLM_GetLHTargetTemp..26

PDLM_GetLHTargetTempLimits...26

PDLM_GetLHVersion..14, 15

PDLM_GetLHWavelength... 27

PDLM_GetLibraryVersion... 8

PDLM_GetLocked... 19

PDLM_GetPresetInfo.. 32

PDLM_GetPresetText... 32

PDLM_GetPulsePower... 28

PDLM_GetPulsePowerLimits..27

PDLM_GetPulsePowerNanowatt..29

PDLM_GetPulsePowerPermille..28

PDLM_GetPulseShape... 29

PDLM_GetQueuedChanges...6, 17

PDLM_GetQueuedError.. 18

PDLM_GetQueuedErrorString..18

PDLM_GetSlowGate... 23

PDLM_GetSoftLock.. 19

PDLM_GetSystemStatus.. 17

PDLM_GetTagDescription.. 6, 9

PDLM_GetTagValueList... 18

PDLM_GetTempScale.. 25

PDLM_GetTriggerLevel.. 22

PDLM_GetTriggerLevelLimits...21

PDLM_GetTriggerMode.. 21

PDLM_GetUSBDriverInfo... 8

PDLM_GetUSBStrDescriptor..12

PDLM_LibIsRunningInWine..8

PDLM_OpenDevice.. 10

PDLM_OpenGetSerNumAndClose...5, 11

PDLM_RecallPreset.. 32

PDLM_SetBurst.. 24

PDLM_SetCwPower... 30

PDLM_SetCwPowerMicrowatt..30

PDLM_SetCwPowerPermille...30

PDLM_SetExclusiveUI.. 11

PDLM_SetFastGate.. 22

PDLM_SetFastGateImp.. 23

PDLM_SetFrequency.. 24

PDLM_SetHWND.. 5, 16

PDLM_SetLaserMode... 19

PDLM_SetLDHPulsePowerTable..20, 27

Page 46

PicoQuant GmbH Taiko PDL M1 Programming Reference

PDLM_SetLHFan.. 31

PDLM_SetLHTargetTemp... 26

PDLM_SetPulsePower.. 28

PDLM_SetPulsePowerNanowatt...28

PDLM_SetPulsePowerPermille...28

PDLM_SetSlowGate... 23

PDLM_SetSoftLock... 19

PDLM_SetTempScale... 25

PDLM_SetTriggerLevel... 22

PDLM_SetTriggerMode.. 21

PDLM_StorePreset... 31

Page 47

PicoQuant GmbH Taiko PDL M1 Programming Reference

This page was intentionally left blank

Page 48

PicoQuant GmbH Taiko PDL M1 Programming Reference

Page 49

All information given here is reliable to our best knowledge. However, no responsibility is assumed for possible inaccuracies
or omissions. Specifications and external appearances are subject to change without notice.

PicoQuant GmbH
Rudower Chaussee 29 (IGZ)
12489 Berlin
Germany

P +49-(0)30-1208820-0
F +49-(0)30-1208820-90
info@picoquant.com
www.picoquant.com

	1. Introduction
	2. Library for Software Developers
	2.1. Covered Library and Hardware Versions
	2.2. General Notes
	2.2.1. Naming Conventions
	2.2.2. Calling Conventions
	2.2.3. Transferring Arguments and Memory Allocation
	2.2.4. Return Values
	2.2.5. Running Considerations
	2.2.6. Status Updates and Tagged Communication

	2.3. Using the Taiko API DLLs under Linux
	2.3.1. Requirements
	2.3.2. Device Access Permissions
	2.3.3. Using the Library and Demo Programs

	3. List of API Functions
	3.1. Interface Functions
	3.2. Basic Device Functions
	3.3. Device Information Functions
	3.4. Laser Head Information Functions
	3.5. Status and Error Information Functions
	3.6. Laser Locking Functions
	3.7. Laser Emission Mode Functions
	3.8. Triggering and Gating Functions
	3.9. Pulse Frequency and Burst Setting Functions
	3.10. Functions for Temperature Settings
	3.11. Laser Head Functions for Pulse Power Settings
	3.12. Laser Head Functions for CW Power Settings
	3.13. Special Laser Head Functions
	3.14. Preset Functions

	4. Demonstration Programs
	5. Legal Terms
	5.1. Copyright
	5.2. Trademarks

	6. Appendix
	6.1. Table of Common Constants
	6.2. Table of Return / Error Codes
	6.3. Table of Assigned Status Bits
	6.4. Table of Useful Status Masks
	6.5. Table of Declared Tag Types
	6.6. Table of Documented Tags
	6.7. Table of Supported Temperature Scales
	6.8. Table of Laser Head Feature Bits
	6.9. Table of Laser Head Types
	6.10. Index

