
PicoHarp 330

High Resolution Time–Correlated
Single Photon Counting System
and High-Speed Time Tagger

User's Manual

Version 1.0.0.0

PH330Lib – Programming Library
for Custom Software Development

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

Table of Contents
1. Introduction.. 3

2. General Notes.. 4

2.1. Scope and Compatibility... 4

2.2. What’s new in this Version...4

2.3. Warranty and Legal Terms...4

3. Installation of the PH330Lib Software Package..6

4. The Demo Applications.. 7

4.1. Functional Overview... 7

4.2. The Demo Applications by Programming Language...8

5. Advanced Techniques.. 13

5.1. Efficient Data Transfer.. 13

5.2. Instant TTTR Data Processing...13

5.3. Working with Warnings... 14

5.4. Hardware Triggered Measurements...14

5.5. Working with Event Filtering...15

5.6. Using Multiple Devices... 16

6. Problems, Tips & Tricks.. 17

6.1. PC Performance Requirements...17

6.2. USB Interface... 17

6.3. Troubleshooting... 17

6.4. Access permissions... 18

6.5. Version tracking... 18

6.6. Software Updates... 18

6.7. Bug Reports and Support... 18

7. Appendix.. 19

7.1. Data Types... 19

7.2. Functions Exported by PH330Lib...19

7.2.1. General Functions.. 20

7.2.2. Device Related Functions..20

7.2.3. Functions for Use on Initialized Devices...21

7.2.4. Special Functions for TTTR Mode..30

7.2.5. Special Functions for TTTR Mode with Event Filtering...31

7.3. Warnings.. 34

Page 2

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

1. Introduction
The PicoHarp 330 is a cutting edge Time-Correlated Single Photon Counting (TCSPC) system and time tag-
ger with USB 3.0 interface. Its new integrated design provides a flexible number of high performance input
channels at very reasonable cost and enables innovative measurement approaches. The timing circuits allow
high measurement rates up to over 80 million counts per second (Mcps) with an excellent time resolution of
1 ps, a single channel time jitter as small as 2 ps r.m.s. and a dead-time of only 680 ps. The USB interface
provides very high throughput as well as ‘plug and play’ installation.

The device’s input triggers are adjustable for a wide range of input signals.They can be configured as Con-
stant Fraction Discriminators (CFDs) or as programmable edge triggers, the latter even for both polarities.
These specifications qualify the PicoHarp 330 for use with Superconducting Nanowire Single Photon Detec-
tors (SNSPD), Single Photon Avalanche Diodes (SPADs), Hybrid Photo-detectors (HPD), and Photo-multi-
plier Tubes (PMT). Depending on detector and excitation source the FWHM of the overall Instrument Re-
sponse Function (IRF) can be as small as 15 ps. The PicoHarp 330 can be purchased with one or two timing
inputs and one synchronization (sync) input. The use of these inputs is very flexible. In fluorescence lifetime
applications the sync channel is typically used as a synchronization input from a laser. The other inputs are
then used for photon detectors. Alternatively, notably in quantum optics applications, all inputs including the
sync input can be used for photon detectors.

The PicoHarp 330 can operate in various modes to adapt to different measurement needs. The standard his-
togram mode performs real–time histogramming in host memory. Two different Time–Tagged–Time–Resolved
(TTTR) modes allow recording each photon event on separate, independent channels, thereby providing un-
limited flexibility in off–line data analysis such as burst detection and time–gated or lifetime weighted Fluores-
cence Correlation Spectroscopy (FCS) as well as picosecond coincidence correlation, using the individual
photon arrival times. The PicoHarp 330 is furthermore supported by a variety of accessories such as pre–
amplifiers, signal adaptors and detector assemblies from PicoQuant.

For more information on the PicoHarp 330 hardware and software please consult the PicoHarp 330 manual.
For details on the method of Time–Correlated Single Photon Counting, please refer to our TechNote on TC-
SPC.

The PicoHarp 330 standard software provides functions such as the setting of measurement parameters, dis-
play of results, loading and saving of measurement parameters and histogram curves. Important measure-
ment characteristics such as count rate, count maximum and position, histogram width (FWHM) are dis-
played continuously. While these features will meet many of the routine requirements, advanced users may
want to include the PicoHarp’s functionality in their own automated measurement systems with their own soft-
ware. In particular where the measurement must be interlinked or synchronized with other processes or in-
struments this approach may be of interest. For this purpose a programming library is provided as a Dynamic
Link Library (DLL) for Windows.

The library supports custom programming in virtually all major programming languages, notably C / C++, C#,
Delphi / Pascal, Python, LabVIEW and MATLAB. This manual describes the installation and use of the Pico-
Harp 330 programming library and explains the associated demo programs. Please read both this library
manual and the PicoHarp 330 manual before beginning your own software development with the DLL. The
PicoHarp 330 is a sophisticated real–time measurement system. In order to work with it using the DLL, sound
knowledge in your chosen programming language is required.

Page 3

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

2. General Notes

2.1. Scope and Compatibility
This manual solely covers the programming library PH330Lib for the product model PicoHarp 330. The hard-
ware and software of the predecessor product PicoHarp 300 is significantly different from that of the PicoHarp
330. There is no software compatibility across the two products. Please do not confuse the two lines. The Pi-
coHarp 300 has its own manual and its own software.

This version of the PicoHarp 330 programming library is suitable for Windows 10 and 11. Windows 7 and 8
may still work but are no longer actively supported. In each case the x64 version is required.

The library has been tested with MinGW-W64 4.3.5, Visual C++ 2019, Visual C# 2022, Mono 6.12.0,
Delphi 11.1, Lazarus 2.2.0 + FreePascal 3.2.2, Python 3.11, LabVIEW 2020, and MATLAB R2019a.

There is also a library version for Linux which is fully compatible with that for Windows so that applications
can easily be ported across the two platforms. See the separate Linux manual.

This manual assumes that you have read the PicoHarp 330 manual, references to it will be made where ne-
cessary. It is also assumed that you have solid experience with the chosen programming language. Our sup-
port cannot teach programming fundamentals.

Note that despite of our efforts to keep changes minimal, data structures, program flow and function calls
may still change in future versions without advance notice. Users must maintain appropriate version checking
in order to avoid incompatibilities. There is a function call that you can use to retrieve the version number
(see section 7.2). Note that this call returns only two digits (major and minor) of the version (e.g. presently
1.0). The DLL actually has two further sub–version digits, so that the complete version number has four digits
(e.g. presently 1.0.0.0). They are shown only in the Windows file properties. These sub–digits help to identify
intermediate versions that may have been released for minor updates or bug fixes. The interface of releases
with identical major version will remain the same. The minor version is typically incremented when there are
new features or functions added without breaking compatibility in regard to the original interface of the corres-
ponding major release. The rightmost digit of the complete version number usually increments to indicate
bugfix releases of otherwise identical interface and functionality.

2.2. What’s new in this Version
Version 1.0.0.0 is the first release of PH330Lib and hence there is everything new here. Nevertheless, users
of other PiqoQuant TCSPC systems will find it very familiar. Compared to such earlier products, e.g. the Multi-
Harp family, the interface remains conceptually unchanged, except that support for new or extended features
such as the programmable input configuration required the introduction of some new API calls. A related nov-
elty is that in addition to PH330Lib there is now a relatively advanced high-level API package for Python
called “snAPI”. It acts as a convenience layer on top of PH330Lib and readily provides data collection and file
writing methods as well as many real-time analysis methods such as intensity and coincidence time traces,
FCS and g(2) correlation. Note that snAPI is free of charge but it is a separate software package that you need
to download and install separately.

2.3. Warranty and Legal Terms

Disclaimer

PicoQuant GmbH disclaims all warranties with regard to the supplied software and documentation including
all implied warranties of merchantability and fitness for a particular purpose. In no case shall Pi-
coQuant GmbH be liable for any direct, indirect or consequential damages or any material or immaterial dam-
ages whatsoever resulting from loss of data, time or profits; arising from use, inability to use, or performance
of this software and associated documentation.

Page 4

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

License and Copyright Notice

With the PicoHarp 330 hardware product you have purchased a license to use the PH330Lib software. You
have not purchased any other rights to the software itself. The software is protected by copyright and intellec-
tual property laws. You may not distribute the software to third parties or reverse engineer, decompile or dis-
assemble the software or part thereof. You may use and modify demo code to create your own software. Ori-
ginal or modified demo code may be re–distributed, provided that the original disclaimer and copyright notes
are not removed from it. Copyright of this manual and on–line documentation belongs to PicoQuant GmbH.
No parts of it may be reproduced, translated or transferred to third parties without written permission of Pi-
coQuant GmbH.

Products and corporate names appearing in this manual may or may not be registered trademarks or subject
to copyrights of their respective owners. PicoQuant GmbH claims no rights to any such trademarks. They are
used here only for identification or explanation and to the owner’s benefit, without intent to infringe.

Page 5

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

3. Installation of the PH330Lib Software Package
PH330Lib and its demos will not be installed by the standard PicoHarp 330 software setup. The standard "in-
teractive" PicoHarp 330 data acquisition software does not require the DLL, which is provided for custom ap-
plication programming only. Vice versa, your custom program will only require the DLL and the driver, but not
the standard PicoHarp 330 data acquisition software. Installing both the standard PicoHarp software and
DLL–based custom programs on the same computer is possible, but only one program at a time can use the
same PicoHarp 330 device.

To install PH330Lib, please back up your work, then disconnect your PicoHarp 330 device(s) and uninstall
any previous versions of PH330Lib. Then run the setup program SETUP.EXE in the PH330Lib folder from
the installation media. If you received the setup files as a ZIP archive, please unpack them to a temporary dir-
ectory on your hard disk and run SETUP.EXE from there. On some installations of Windows you may need
administrator rights to perform the setup. If the setup is performed by an administrator but used from other
accounts without full access permission to all disk locations, these restricted accounts may not be able to run
the demos in the default locations they have been installed to. In such cases it is recommended that you copy
the demo folder (or selected files from it) to a dedicated development folder, in which you have the necessary
rights (e.g., in ‘My Documents’).

You also need to conect the PicoHarp 330 device electrically if you have not done so before (see your Pico-
Harp 330 manual). The programming library will access the PicoHarp 330 through a dedicated device driver.
The driver is installed together with the library by SETUP.EXE and is then instantly ready to use. Depending
on your Windows version you may be prompted to confirm the final driver installation when the device is con-
nected for the first time. Both the standard PicoHarp software distribution as well as the PH330Lib distribution
media contain the driver and will install it in the dedicated location that Windows maintains for this purpose.

Note that multiple PicoHarp 330 devices can be controlled through PH330Lib. After connecting the device(s)
you can use the Windows Device Manager to check if they have been detected (under the USB tree) and the
driver is correctly installed. On some Windows versions you may need administrator rights to perform setup
tasks. Refer to your PicoHarp 330 manual for other installation details.

It is recommended to start your work with the PicoHarp 330 by using the standard interactive PicoHarp 330
data acquisition software. This should give you a better understanding of the system’s operation before at-
tempting your own programming efforts. It also ensures that your optical / electrical setup is working. See the
subfolder \demos in your PH330Lib installation folder for sample code that can be used as a starting point
for your own programs. Please copy the demos to a working directory where you have write permission. In -
side the installation folder this is typically not the case.

If you wish to uninstall the library you should first of all back–up custom files you might have created in the in-
stallation folder. Do not manually delete any program files from the installation folder as it will render a clean
uninstall impossible. Also do not delete any driver files manually.

To uninstall the library from your PC you may need administrator rights (depending on Windows version and
security settings). Go to Control Panel > Programs and Features and select PicoQuant – Pico-
Harp 330 - PH330Lib vx.x for un–installation. This will remove all files that were installed by the setup pro-
gram but not the user data that may have been stored. If there was user data in the installation folders these
will not be deleted. If intended, you will have to delete these files or folders manually.

Note that un–installation of the data acquisition software does not uninstall the device driver since other soft -
ware may still need it. If need be you can delete the driver software in the Windows Device Manager.

Page 6

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

4. The Demo Applications

4.1. Functional Overview
Please note that all demo code provided is correct to the best of our knowledge. However, we must disclaim
all warranties as to fitness for a particular purpose of this code. It is provided ‘as is’ for no more than explanat-
ory purposes and a starting point for your own work.

The demos are kept as simple as possible to maintain focus on the key issues of accessing the library. This is
why most of the demos have a minimalistic user interface and / or must be run from the command line (cmd).
For the same reason, the measurement parameters are mostly hard–coded and thereby fixed at compile
time. It is therefore necessary to change the source code and re–compile the demos in order to run them in a
way that is matched to your individual measurement setup. Running them unmodified will probably result in
useless data (or none at all) because of inappropriate sync divider, resolution, input level settings, etc. In or-
der to understand these settings it is strongly recommended that you read the PicoHarp 330 manual and try
them out using the regular PicoHarp 330 software.

For the reason of simplicity, most of the demos will always only use the first PicoHarp 330 device they find, al-
though the library can support multiple devices. If you wish to use some other demo with more than one Pico-
Harp 330 you need to modify the code accordingly (see section Fehler: Verweis nicht gefunden).

There are demos for C / C++, C#, Delphi / Pascal, Python, LabVIEW and MATLAB. For each of these pro-
gramming languages / systems there are different demo versions. First of all please study the simplest
demos for the two fundamental measurement modes “histo mode” and TTTR mode”.

Histogramming Mode Demos

These demos show how to use the standard measurement mode for real-time histogramming. These are the
simplest demos and the best starting point for your own experiments. TCSPC histogramming is easy to use
and useful in typical fluorescence decay measurements as well as in basic quantum optics experiments. The
time differences between sync input and the channel inputs are calculated in real-time and put in histograms
for each channel.

TTTR Mode Demos

These demos show how to use TTTR mode, i.e. recording individual photon events instead of just forming
histograms. This permits sophisticated data analysis methods, such as single molecule burst detection, the
combination of fluorescence lifetime measurement with FCS and picosecond coincidence correlation or even
Fluorescence Lifetime Imaging (FLIM).

The PicoHarp 330 actually supports two different Time–Tagging modes, T2 and T3 mode. When referring to
both modes together we use the general term TTTR here. For details on the two modes, please refer to your
PicoHarp 330 manual. In TTTR mode it is also possible to record external TTL signal transitions as markers
in the TTTR data stream (see the PicoHarp 330 manual) which is typically used for FLIM.

Because TTTR mode requires real–time processing and / or real–time storing of data, the TTTR demos are
more demanding both in programming skills and computer performance. Also consider the speed perform-
ance of your programming language. Interpreted Python and Matlab, for example, are very slow. For more in-
formation on TTTR mode consult the corresponding section in your PicoHarp 330 manual.

Note that you must not call any of the PH330_Setxxx routines while a TTTR measurement is running. The
result would potentially be loss of events in the TTTR data stream. Changing settings during a measurement
makes little sense anyway, since it would introduce inconsistency or temporal incoherence in the collected
data.

Details on how to interpret and process the TTTR records can be studied in the advanced demos (see be -
low). You may also consult the PTU file demo code installed together with the regular PicoHarp 330 software.

Page 7

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

Advanced Demos

For several programming languages there are also advanced demos to show hardware triggered histogram
measurements (see section 5.4) or instant processing (see section 5.2) and filtering of TTTR data streams
(section 5.5). In case of LabVIEW there is an advanced demo allowing interactive input of most parameters
on the fly.

4.2. The Demo Applications by Programming Language
As outlined above, there are demos for C / C++, C#, Delphi / Pascal, Python, LabVIEW and MATLAB. For
each of these programming languages there are different demo versions for the basic measurement modes
listed in the previous section. They are not 100% identical. For several selected programming languages
there are also some advanced demos residing in a subfolder advanced. In this context see section 5 on ad-
vanced techniques.

This manual explains the special aspects of using the PicoHarp 330 programming library, it does NOT teach
you how to program in the chosen programming language. We strongly recommend that you do not choose
to develop a software project with the PicoHarp 330 library as your first attempt at programming. In any case,
study the basic demos before trying the advanced demos. You will also need some knowledge about Win-
dows DLL concepts and calling conventions. The ultimate reference for details about how to use the DLL is in
any case the source code of the demos and the C header files (ph330lib.h and ph330defin.h).

Be warned that wrong parameters and / or variables, invalid pointers and buffer sizes, inappropriate calling
sequences etc. may crash your application or get the device locked up so that you need to restart it. Also
note that the DLL is not re–entrant w.r.t. an individual device instance. This means, it cannot be accessed
from multiple, concurrent processes or threads at the same time unless separate device instances are being
used. All calls to one device instance must be made sequentially. The order of the calls is to some extent flex-
ible, e.g. when parameters are set. Some other calls such as initialization, start and stop of measurements
obviously must follow in a meaningful order. You may preferably want to stick to the order shown by the
demos.

The C / C++ Demos

These demos are provided in the C subfolder. The code is indeed plain C to provide the smallest common
denominator for C and C++. Consult ph330lib.h, ph330defin.h and this manual for reference on the
library calls. The library functions must be declared as extern "C" when used from C++. This is achieved
most elegantly by wrapping the entire include statements for the library headers:

extern "C"

{

 #include "ph330defin.h"

 #include "ph330lib.h"

}

In order to make the exports of PH330Lib.dll known to the rest of your application you may use
PH330Lib.exp or link directly with the import library PH330Lib.lib. PH330Lib.lib was created for
MSVC 6.0 or higher, with symbols decorated in Microsoft style. The DLL also (additionally) exports all
symbols undecorated, so that other compilers should be able to use them conveniently, provided they
understand the Microsoft LIB format or they can create their own import library. The MinGW compiler
understands the Microsoft format.

To test any of the demos, consult the PicoHarp 330 manual for setting up your device and establish a meas-
urement setup that runs correctly and generates useable test data. Compare the settings (notably sync di-
vider, binning and trigger levels) with those used in the demo and use the values that work in your setup
when building and testing the demos. Observe the mode input variable going into PH330_Initialize. It
makes a difference if you run T2 or T3 mode. For instance, T2 mode will not allow you to work with high sync
rates. For meaningful measurements you will need to adjust the sync divider and the resolution (binning) de-
pendent on your choice of mode.

Page 8

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

The C demos are designed to run in a command line console (cmd). They need no command line input para-
meters. They create their output files in their current working directory. The output files will be ASCII–readable
only in case of the standard histogramming demos and most of the advanced demos. For the histogramming
demo, the output files will contain multiple columns (one per channel) of integer numbers representing the
counts in the histogram bins. You can use any editor or a data visualization program to inspect the histo-
grams. In the simplest TTTR mode demo the output is stored in binary format for simplicity and performance
reasons. The binary files must be read by dedicated programs according to the format they were written in.
The file demos (provided by way of the regular PicoHarp 330 software installation) for reading the PicoQuant
TTTR data files (.PTU) and the advanced demos tttrmode_instant_processing can be used as a
starting point to learn this. The file read demos cannot be used directly on the demo output because they ex -
pect a file header the demos do not generate. This is intentional in order to keep the demos focused on the
key issues of using the library.

The C# Demos

The C# demos are provided in the Csharp subfolder. They have been tested with MS Visual Studio as well
as with Mono.

Calling a native DLL (unmanaged code) from C# requires the DllImport attribute and correct type specific-
ation of the parameters. Not all types are easily portable. Especially C strings require special handling. The
demos show how to do this.

With the C# demos you also need to check whether the hard-coded settings are suitable for your actual in -
strument setup. The demos are designed to run in a cmd console. They need no command line input para-
meters. They create their output files in their current working directory. The output files will be ASCII in case
of the histogramming demo and some of the advanced demos. In the simplest TTTR mode demo the output
is stored in binary format for simplicity and performance reasons. The ASCII files of the histogramming
demos will contain single or multiple columns of integer numbers representing the counts from the histogram
channels. You can use any editor or a data visualization program to inspect the histograms. The binary files
must be read by dedicated programs according to the format they were written in. The file read demos
provided for the PicoQuant TTTR data files (.PTU) and the advanced demo tttrmode_instant_pro-
cessing can be used as a starting point to learn this. The file read demos cannot be used directly on the
demo output because they expect a file header the demos do not generate. This is intentional in order to
keep the demos focused on the key issues of using the library.

Observe the mode input variable going into PH330_Initialize. It makes a difference if you run T2 or
T3 mode. For instance, T2 mode will not allow you to work with high sync rates. For meaningful measure-
ments you will need to adjust the sync divider and the resolution (binning) dependent on your choice of mode.

The Delphi / Lazarus Demos

Users of Delphi or FreePascal / Lazarus please refer to the Pascal folder. The source code for Delphi and
Lazarus is the same. Everything for the respective Delphi demo is in the project file for that demo (*.DPR).
Lazarus users can use the *.LPI files that refer to the same *.DPR files.

In order to make the exports of PH330Lib.dll known to your application you have to declare each function
in your Pascal code as ‘external’. This is already prepared in the demo source code. PH330Lib.dll was
created with symbols decorated in Microsoft style. It additionally exports all symbols undecorated, so that you
can call them from Delphi with the plain function name. Please check the function parameters of your code
against ph330lib.h in the demo directory whenever you update to a new DLL version.

The Delphi / Lazarus demos are also designed to run in a cmd console. They need no command line input
parameters. They create output files in their current working directory. The output files of the will be ASCII in
case of the histogramming demo and some of the advanced demos. In the simplest TTTR mode demo the
output is stored in binary format for simplicity and performance reasons. You can use any data visualization
program to inspect the ASCII histograms. The binary files must be read by dedicated programs according to
the format they were written in. The file read demos for the regular PicoQuant TTTR data files (.PTU) and the
advanced demo tttrmode_instant_processing can be used as a starting point to learn this. The file
read demos cannot be used directly on the demo output because they expect a file header the demos do not
generate. This is intentional in order to keep the demos focused on the key issues of using the library.

Page 9

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

Observe the mode input variable going into PH330_Initialize. It makes a difference if you run T2 or
T3 mode. For instance, T2 mode will not allow you to work with high sync rates. For meaningful measure-
ments you will need to adjust the sync divider and the resolution (binning) dependent on your choice of mode.

The Python Demos

The Python demos are in the Python folder. Python users should start their work in histogramming mode
from histomode.py. The code should be fairly self explanatory. If you update to a new DLL version please
check the function parameters of your existing code against ph330lib.h in the PH330Lib installation direct-
ory. Note that special care must be taken where pointers to C–arrays are passed as function arguments.

The Python demos create output files in their current working directory. The output file will be readable text in
case of the standard histogramming demo and some of the advanced demos. The histogramming demo out-
put files will contain columns of integer numbers representing the counts from the histogram channels. You
can use any data visualization program to inspect the histograms. In the simplest TTTR mode demo the out-
put is stored in binary format for performance reasons. The binary files must be read by dedicated programs
according to the format they were written in. The file read demos for the regular PicoQuant TTTR data files
(.PTU) and the advanced demo tttrmode_instant_processing can be used as a starting point to learn
this. The file read demos cannot be used directly on the demo output because they expect a file header the
demos do not generate. This is intentional in order to keep the demos focused on the key issues of using the
library. Note that even if it may be tempting to directly use the advanced demo tttrmode_instant_pro-
cessing you should not do this routinely. It creates very large files and throughput with interpreted Python is
very poor.

Observe the mode input variable going into PH330_Initialize. It makes a difference if you run T2 or
T3 mode. For instance, T2 mode will not allow you to work with high sync rates. For meaningful measure-
ments you will need to adjust the sync divider and the resolution (binning) dependent on your choice of mode.

The LabVIEW Demos

The LabVIEW demo VIs are provided in the src sub-folder inside the LabVIEW20xx folders. They can be run
only with 64 bit LabVIEW. The original demo code was created with LabVIEW 2020, accordingly also a Lab-
VIEW project file (PicoHarp330.lvproj) and two executables (PicoHarp330Histo.exe and PicoHarp330T3.exe;
both in build sub-folder) are provided for that version. For backward compatibility the source code was also
converted to LabVIEW 2010.

The first demo (1_SimpleDemo_PH330Histo.vi) is very simple, demonstrating the basic usage and call-
ing sequence of the provided SubVIs encapsulating the DLL functionality, which are assembled inside the
LabVIEW library ph330lib_x86_x64_UIThread.llb (in the folder _lib/PQ/PicoHarp330). The demo
starts by calling some of these library functions to setup the hardware in a defined state and continues with a
measurement in histogramming mode by calling the corresponding library functions inside a while-loop. Histo-
grams and count rates for all available hardware channels are displayed on the front panel in a waveform
graph (you might have to select AutoScale for the axes) and numeric indicators, respectively. The measure-
ment is stopped if either the acquisition time has expired, if an error occurs (which is reported in the error out
cluster), if an overflow occurs or if the user hits the STOP button.

The second demo for histogramming mode (2_AdvancedDemo_PH330Histo.vi) is a more sophisticated
one, allowing the user to control all hardware settings “on the fly”, i.e. to change settings like acquisition time
(Acqu. ms), resolution (Resol. ms), offset (Offset ns in Histogram frame), number of histogram bins (Num
Bins), etc. before, after or while running a measurement. In contrast to the first demo settings for each avail-
able channel (including the Sync channel) can be changed individually (Settings button) and consecutive
measurements can be carried out without leaving the program (Run button; changes to Stop after pressing).
Additionally, measurements can be done either as “single shot” or in a continuous manner (Conti. Checkbox).
Various pieces of information are provided on the Front Panel, like histograms and count rates for each avail-
able (and enabled) channel as waveform graphs (you might have to select AutoScale for the axes), Sync
rate, readout rate, total counts and status information in the status bar, etc. In case an error occurs a popup
window informs the user about that error and the program is stopped.

The program structure of this demo is based upon the National Instruments recommendation for queued
message and event handlers for single thread applications. Some comments inside the source code should
help the user to get an overview of the program and to facilitate the development of customized extensions.

Page 10

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

The third LabVIEW demo (3_AdvancedDemo_PH330T3.vi) is the most advanced one and demonstrates
the usage of T3 mode including real-time evaluation of the collected TTTR records. The front panel re-
sembles the second demo but in addition to the histogram display a second waveform graph (you might have
to select AutoScale for the axes) also displays a time chart of the incoming photons for each available (and
enabled) channel with a time resolution depending on the Sync rate and the entry in the Resol. ms control
inside the Time Trace frame (which can be set in multiples of two). In contrast to the second demo there is
no control to set an overflow level or the number of histogram bins, which is fixed to 32.768 in T3 mode. Also
in addition to the acquisition time (called T3Acq. ms in this demo; set to 360.000.000 ms = 100 h by default)
a second time (Int.Time ms in Histogram frame) can be set which controls the integration time for accumu-
lating a histogram.

The program structure of this demo extends that of the second demo by extensive use of LabVIEW type-
definitions and two additional threads: a data processing thread (PH330_DataProcThread.vi) and a visu-
alization thread. The communication between these threads is accomplished by LabVIEW queues. Thereby
the FiFo read function (case ReadFiFo in UIThread) can be called as fast as possible without any additional
latencies from data processing workload.

Some comments inside the source code should help the user to get an overview of the program and to facilit -
ate the development of customized extensions. Please note that due to performance reasons some of the
SubVIs inside PH330_DataProcThread.vi have been inlined for performance, so that no debugging is
possible on these SubVIs.

Program specific SubVIs and type-definitions used by the demos are organized in corresponding sub-folders
inside the demo folder (SubVIs, Types). General helper functions and type-definitions as well as DLL encap-
sulating libraries (*.llb) can be found in the _lib folder (containing further sub-folders) inside the demo folder.
In order to facilitate the convenient use of all DLL functions, additional VIs called PH330_AllDllFunc-
tions_xxx.vi have been included. These VIs are not meant to be executed but should only give a struc-
tured overview of all available DLL functions and their functional context.

Please note:

In addition to the library used by the demos (ph330lib_x86_x64_UIThread.llb) a second library is in-
cluded allowing the DLL calls to be executed in any thread of LabVIEWs threading engine
(ph330lib_x86_x64_AnyThread.llb). This library is intended for time critical applications where user
actions on the front panel (like e.g., resizing or moving) must not affect the execution of a data acquisition
thread containing these DLL functions (please refer to “Multitasking in LabVIEW”: http://zone.ni.com/refer-
ence/en-XX/help/371361P-01/lvconcepts/multitasking_in_labview/). When using this library you have to make
sure that all DLL functions are called in a sequential order to avoid errors or even program crashes. Also be
aware that DLL functions in ph330lib_x86_x64_AnyThread.llb have the same names as in
ph330lib_x86_x64_UIThread.llb and opening both libraries at the same time would lead to name con-
flicts. It is recommended that only experienced users should use ph330lib_x86_x64_AnyThread.llb.

The MATLAB Demos

The MATLAB demos are provided in the Matlab folder. They are contained in .m files. You need to have a
MATLAB version that supports the loadlibrary and calllib commands. The earliest version we have
tested in this regard is MATLAB 7.3. Note that recent versions of MATLAB require a compiler to be installed
for working with DLLs. We tested with MATLAB R2019a and MinGW. For your specific version of MATLAB,
please check the documentation of the MATLAB command loadlibrary as to which compilers it supports.
Be careful about the header file name specified in loadlibrary. The names are case sensitive and spelling
errors will lead to an apparently successful load - but later no library calls will work.

The MATLAB demos are designed to run inside the MATLAB console. They need no command line input
parameters. They create output files in their current working directory. The output file will be ASCII in case of
the histogramming demo. In TTTR mode the output is stored in binary format for simplicity and performance
reasons. You can use any data visualization program to inspect the ASCII histograms. The binary files from
TTTR mode must be read by dedicated programs according to the format they were written in. The file read
demos for the regular PicoQuant TTTR data files (.PTU) can be used as a starting point. They cannot be
used directly on the binary demo output because they expect a file header the demos do not generate. This is
intentional in order to keep the demos focused on the key issues of using the library. The file demo code can
(with minor adaptions) in principle be used to process the TTTR records on the fly. However, MATLAB scripts
are relatively slow compared to properly compiled code. This may impose throughput limits. You might want

Page 11

http://zone.ni.com/reference/en-XX/help/371361P-01/lvconcepts/multitasking_in_labview/
http://zone.ni.com/reference/en-XX/help/371361P-01/lvconcepts/multitasking_in_labview/

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

to consider compiling Mex files instead. In this case please study the advanced demos tttrmode_in-
stant_processing (C, Python, Delphi, C#) which can be used as a starting point to learn this.

Observe the mode input variable going into PH330_Initialize. It makes a difference if you run T2 or
T3 mode. For instance, T2 mode will not allow you to work with high sync rates. For meaningful measure-
ments you will need to adjust the sync divider and the resolution (binning) dependent on your choice of mode.

Page 12

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

5. Advanced Techniques

5.1. Efficient Data Transfer
The TTTR modes are designed for fast real–time data acquisition. TTTR mode is most efficient in collecting
data with a maximum of information. It is therefore most likely to be used in sophisticated on–line data pro-
cessing scenarios, where it may be worth optimizing data throughput.

In order to achieve the highest throughput, the PicoHarp 330 uses USB bulk transfers. This is supported by
the PC hardware that can transfer data to the host memory without much help of the CPU. For the PicoHarp
330 this permits data throughput up to 90 Mcps (USB 3.0) and leaves time for the host to perform other use-
ful things, such as histogramming, on–line data analysis or storing data to disk. USB 2.0 only permits 9 Mcps
and should not be used.

In TTTR mode the data transfer process is exposed to the library user in a single function PH330_ReadFiFo
that accepts a buffer address where the data is to be placed. The memory block size is fixed and must
provide space for 1,048,576 event records. However, the actual transfer size will depend on how much data
was available in the device’s FIFO buffer. The call will typically return after about 10 ms but possibly quicker if
no more data is available. The latency behavior at input rates close to zero is controlled by
PH330_SetOflCompression. The actual time to return can also vary due to USB overhead and unpredict-
able Windows latencies, especially when the PC or the USB connection is slow.

As noted above, the transfer is implemented efficiently without excessive CPU use. Nevertheless, assuming
large block sizes, the transfer takes some time. Windows therefore gives the unused CPU time to other pro -
cesses or threads i.e. it waits for completion of the transfer without burning CPU time. This wait time is what
can also be used for doing ‘useful things’ in terms of any desired data processing or storing within your own
application. The proper way of doing this is to use multi–threading. In this case you design your program with
two threads, one for collecting the data (i.e. working with PH330_ReadFiFo) and another for processing or
storing the data. Multiprocessor systems can benefit from this technique even more. Of course you need to
provide an appropriate data queue between the two threads and the means of thread synchronization.
Thread priorities are another issue to be considered. Finally, if your program has a graphic user interface you
may need a third thread to respond to user actions reasonably fast. Again, this an advanced technique and it
cannot be demonstrated in all detail here. Currently only the most advanced LabVIEW demo uses this tech-
nique. Greatest care must be taken not to access the PH330Lib routines from different threads without strict
control of mutual exclusion and maintaining the right sequence of function calls, unless the threads act on dif -
ferent devices. However, the technique allows throughput improvements of 50% .. 100% and advanced pro-
grammers may want to use it. It might be interesting to note that this is how TTTR mode is implemented in
the regular PicoHarp 330 software, where sustained count rates up to 90 Mcps can be handled.

When working with multiple devices, the overall USB throughput is usually limited by the host controller or
any hub the devices must share. You can increase overall throughput if you connect the individual devices to
separate host controllers without sharing hubs. If you install additional USB controller cards you should prefer
fast PCI–express models. However, modern mainboards often have multiple USB host controllers, so you
may not even need extra controller cards. In order to find out how many USB controllers you have and which
one the individual USB sockets belong to, you can use Microsoft's tool usbview. In case of using multiple
devices it is also beneficial for overall throughput if you use multi–threading in order to fetch and store data
from the individual devices in parallel. Again, re–entrance issues must be observed carefully in this case, at
least for all calls accessing the same device.

5.2. Instant TTTR Data Processing
As outlined earlier, collecting TTTR mode streams is time critical when data rates are high. This is why such
streams are often just written to disk and then only subsequently post-processed. Nevertheless there are cir-
cumstances where it is desirable to process the data instantly “on the fly” as it arrives. This may be for the
purpose of an instant preview or for data reduction. The advanced LabVIEW demo nicely demonstrates how
to obtain an instant preview. This requires interpreting and bit-wise dissecting the TTTR data records as well
as correcting for overflows. In order to demonstrate this also for other programming languages there are ad-
vanced demos in the subfolders tttrmode_instant_processing (C, Python, Delphi, C#). These demos
do not write binary output but instead perform an instant processing and write the results out in ASCII. Please
note well that this is done purely for educational purposes. Writing the results out in ASCII is time consuming

Page 13

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

and dramatically reduces the achievable throughput. Furthermore, the resulting files are many times larger
than the original binary data. Any meaningful application derived from these demos should therefore not write
out individual data records but perform some sort of application specific data analysis for preview and/or data
reduction. Typical and meaningful examples are histogramming (see subfolders t3rmode_instant_his-
togramming in C, Python, Delphi and C#) or intensity over time traces as shown in the LabVIEW demo.
Please note also that such real-time processing requires a suitable choice of programming language. For in-
stance, interpreted Python and Matlab scripts are many times slower than natively compiled code. Ultimate
performance is obtained only with a proper compiled language such as C or Pascal. Furthermore, true effi -
ciency (and maximum throughput) can in such a scenario only be achieved by making use of parallel pro-
cessing on multiple CPUs. This requires programming with multiple threads. In this case you should design
your program with at least two threads, one for collecting the data (i.e. working with PH330_ReadFiFo) and
another (or more) for processing, displaying, or storing the data (see also section 5.1). This is not trivial and
requires some programming experience.

If you need quick results and your throughput requirements are moderate you may still try and start your work
with the code from the demos in the subfolders tttrmode_instant_processing. For understanding the
mechanisms they are worth studying anyhow. Looking at the code you will see that after retrieving a block of
TTTR records via PH330_ReadFiFo there is a loop over that block with code to dissect each individual
record. Dependent on what kind of record it is, there will be different actions taken. A “special record” carries
information on time tag overflows and markers, while a regular event record carries photon timing data. While
overflows will typically not be of further interest (except correcting for them) the pieces of interest are markers
and photons. When they occur you notice the calls into the subroutines GotMarker and GotPhoton (with vari -
ants for T2 and T3 mode). These are the points where you may want to accommodate you application spe-
cific code for whatever you may want to do with a photon or a marker. In your derived code you may soon
want to throw out the ASCII output for each and every record. It is only there for demonstration purposes.

5.3. Working with Warnings
The library provides routines for obtaining and interpreting warnings about critical measurement conditions.
The mechanism and warning criteria are the same as those used in the regular PicoHarp 330 software (see
the manual). In order to obtain and use these warnings also in your custom software you may want to use the
library routine PH330_GetWarnings. This may help inexperienced users to notice possible mistakes before
starting a measurement or even during the measurement.

It is important to note that the generation of warnings is dependent on the current count rates and the current
measurement settings. It was decided that PH330_GetWarnings does not obtain the count rates on its own,
because the corresponding calls take some time and might waste USB bandwidth and processing time. It is
therefore necessary that the library routines for count rate retrieval (on all channels) have been called before
PH330_GetWarnings is called. Since most interactive measurement software periodically retrieves the
rates anyhow, this is not a serious complication. Note that there are library calls for retrieval of individual
count rates (PH330_GetSyncRate and PH330_GetCountRate) but in case of performance critical applica-
tions it is more efficient to use PH330_GetAllCountRates retrieving all rates in one call.

The routine PH330_GetWarnings delivers the cumulated warnings in the form of a bit field. In order to
translate this into readable information you can use PH330_GetWarningsText. Before passing the bit field
into PH330_GetWarningsText you can mask out individual warnings by means of the bit masks defined in
mhdefin.h. See the appendix section 7.3 for a description of the individual warnings.

5.4. Hardware Triggered Measurements
This measurement scheme allows to start and stop the acquisition by means of external TTL signals rather
than software commands. Since it is an advanced real-time technique, beginners are advised to not try their
first steps with it. For the same reason, demos exist only in some programming languages (C, C#, Pascal,
Python).

Before using this scheme, consider when it is useful to do so. For instance, it may be tempting to use the
hardware triggering to implement very short histogramming durations. However, remember that TTTR mode
is usually the most efficient way of retrieving the maximum information on photon dynamics. By means of
marker inputs the photon events can be precisely assigned to complex external event scenarios.

Page 14

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

The PicoHarp's data acquisition can be controlled in various ways. Default is the internal CTC (counter timer
circuit). In that case the measurement will take the duration set by the tacq parameter passed to
PH330_StartMeas. The other way of controlling the histogramming duration is by external TTL signals fed
to the control connector pins C1 and C2 (see appendix section Connectors of the PicoHarp 330 manual). In
that case it is possible to have the acquisition started and stopped when specific signals occur. It is also pos-
sible to combine external starting with stopping through the internal CTC. The exact behavior of this scheme
is controlled by the parameters supplied to the call of PH330_SetMeasControl. Dependent on the parame-
ter meascontrol the following modes of operation can be obtained:

Symbolic Name Value Function

MEASCTRL_SINGLESHOT_CTC 0 Default value. Acquisition starts by software
command and runs until the CTC expires. The
duration is set by the tacq parameter passed to
PH330_StartMeas.

MEASCTRL_C1_GATE 1 Data is collected for the period where C1 is active.
This can be the logical high or low period dependent
on the value supplied to the parameter
startedge.

MEASCTRL_C1_START_CTC_STOP 2 Data collection is started by a transition on C1 and
stopped by expiration of the internal CTC. Which
transition actually triggers the start is given by the
value supplied to the parameter startedge.
The duration is set by the tacq parameter passed
to PH330_StartMeas.

MEASCTRL_C1_START_C2_STOP 3 Data collection is started by a transition on C1 and
stopped by a transition on C2. Which transitions
actually trigger start and stop is given by the values
supplied to the arguments startedge and
stopedge.

MEASCTRL_SW_START_SW_STOP 6 Data collection is started and stopped by software
using PH330_StartMeas and PH330_StopMeas.
This permits overcoming the limit of 100 h imposed
by the hardware CTC. This is not a hardware
triggered measurement scheme but it needed to be
listed here for completeness.

The symbolic constants shown above are defined in ph330defin.h. There are also symbolic constants for
the parameters controlling the active edges (rising/falling).

Please study the demo code for external hardware triggering and observe the polling loops required to detect
the beginning and end of a measurement. Be aware that the speed of you computer and the delays intro -
duced by the operating system's task switching impose some limits on how fast you can run this scheme.

5.5. Working with Event Filtering
Filtering TTTR data streams in hardware helps to reduce USB bus load by eliminating photon events that
carry no information of interest as typically found in many coincidence correlation experiments. Please read
the PicoHarp 330 manual for more details.

The filter has several programmable parameters. The parameter timerange determines the time window
the filter is acting on. The parameter matchcnt specifies how many other events must fall into the chosen
time window for the filter condition to act on the event at hand. The parameter inverse inverts the filter ac-
tion, i.e. when the filter would regularly have eliminated an event it will then keep it and vice versa. For the
typical case, let it be not inverted. Then, if matchcnt is 1 we will obtain a simple ‘singles filter’. This is the
most straight forward and most useful filter in typical quantum optics experiments. It will suppress all events

Page 15

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

that do not have at least one coincident event within the chosen time range, be this in the same or any other
channel.

In addition to the filter parameters explained so far it is possible to mark individual channels for use. Used
channels will take part in the filtering process. Unused channels will be suppressed altogether. Furthermore, it
is possible to indicate if a channel is to be passed through the filter unconditionally, whether it is marked as
‘use’ or not. The events on a channel that is marked neither as ‘use’ nor as ‘pass’ will not pass the filter, pro-
vided the filter is enabled. The parameters usechannels and passchannels are actually bitmasks where
channels to be used or passed are indicated by their corresponding bits set to one.

The filter can also be switched into a test mode where the data is not transferred to USB. Instead one will
then use PH330_GetFilterInputRates and PH330_GetFilterOutputRates in order to check its ef-
fect of data rate reduction. This helps to initially try out and optimize the filter parameters without running into
FIFO overrun issues.

5.6. Using Multiple Devices
The library is designed to work with multiple PicoHarp 330 devices (up to 8). The demos use only the first
device found. If you wish to use more than one PicoHarp 330 you need to modify the code accordingly. At
the API level of PH330Lib the devices are distinguished by a device index (0 .. 7). The device order corres-
ponds to the order in which Windows enumerates the devices. If the devices were plugged in or switched on
sequentially when Windows was already up and running, the order is given by that sequence. Otherwise it
can be somewhat unpredictable. It may therefore be difficult to know which physical device corresponds to
the given device index. In order to solve this problem, the library routine PH330_OpenDevice provides a
second argument through which you can retrieve the serial number of the physical device at the given device
index. Similarly you can use PH330_GetSerialNumber any time later on a device you have successfully
opened. The serial number of a physical PicoHarp 330 device can be found at the back of the housing. It is
an 8 digit number starting with 010. The leading zero will not be shown in the serial number strings retrieved
through PH330_OpenDevice or PH330_GetSerialNumber.

As outlined above, if you have more than one PicoHarp 330 and you want to use them together you need to
modify the demo code accordingly. This requires the following steps: Take a look at the demo code where the
loop for opening the device(s) is. In most of the demos all available devices are opened. You may want to ex-
tend this so that you

1. filter out devices with a specific serial number and

2. do not hold open devices you don't actually need.

The latter is recommended because a device you hold open cannot be used by other programs such as the
regular PicoHarp 330 software.

By means of the device indices you picked out you can then extend the rest of the program so that every ac-
tion taken on the single device is also done on all devices of interest, i.e. initialization, setting of parameters,
starting a measurement etc. At the end the demos close all devices. It is recommended to keep this ap-
proach. It does no harm if you close a device that you haven't opened.

Note that combining multiple devices by software does not make a proper replacement for a hardware device
with more channels. This is due to multiple reasons. First, the clocks of the devices are not infinitely accurate
and may therefore drift apart. Second, the software-combined devices cannot start or stop measurements at
exactly the same time. Windows timing is not accurate enough and will cause unpredictable delays of some
milliseconds. Third, the data of the devices arrives in separate data streams and cannot easily be merged to-
gether. Even though the first and second issue can partially be solved by means of external clock signals,
hardware controlled measurements and/or markers, the approach is somewhat cumbersome.

Page 16

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

6. Problems, Tips & Tricks

6.1. PC Performance Requirements
Performance requirements for the DLL are the same as with the standard PicoHarp 330 software. ThePico-
Harp 330 device and its software interface are a complex real–time measurement system demanding appro-
priate performance both from the host PC and the operating system. This is why a reasonably modern CPU
and sufficient memory are required. At least a quad core, 2 GHz processor, 4 GB of memory and a fast hard
disk are recommended.

6.2. USB Interface
In order to deliver maximum throughput, the PicoHarp 330 uses USB 3.0*) bulk transfers. This is why the Pi-
coHarp 330 must rely on having a USB host interface providing USB 3.x speed. USB 3.x host controllers of
modern PCs are usually integrated on the mainboard. For older PCs they may be upgraded as plug-in cards.
Throughput is then usually limited by the host controller and operating system, not the PicoHarp 330. Do not
run other bandwidth demanding devices on the same USB interface when working with the PicoHarp 330.
USB cables must be qualified for USB 3.x speed. Old and cheap cables often do not meed this requirement
and can lead to errors and malfunction. Similarly, many PCs have poor internal USB cabling, so that USB
sockets at the front of the PC are often unreliable. Obscure USB errors may also result from worn out plugs
and sockets or subtle damages to USB cables, caused, e.g., by sharply bending or crushing them. Observe
the USB LED on the front panel: It should light up green to indicate a USB 3.0 connection. If it shows yellow
the device is connected only at USB 2.0 speed and will deliver very poor throughput.

6.3. Troubleshooting
Troubleshooting should begin by testing your hardware and driver setup. This is best accomplished by the
standard PicoHarp 330 software for Windows (supplied by PicoQuant). Only if this software is working prop-
erly you should start working with the DLL. If there are problems even with the standard software, please con-
sult the PicoHarp 330 manual for detailed troubleshooting advice.

The DLL will access the PicoHarp 330 device through a dedicated device driver. You need to make sure the
device driver has been installed correctly. The driver is installed by the setup program using standard Win-
dows Plug&Play mechanisms. In addition both the standard PicoHarp 330 software distribution as well as the
PH330Lib distribution media contain the driver in the subfolder \Driver. You can use the Windows
Device Manager to check if the board has been detected and the driver is installed. On some Windows ver-
sions you may need administrator rights to perform hardware setup tasks. Please consult the PicoHarp 330
manual for hardware related problem solutions.

The next step, if hardware and driver are working, is to make sure you have the DLL installed. It comes with
its own setup program that must be executed as Administrator. In the Windows Explorer you can also right
click PH330Lib.dll (in \Windows\System32) and check the version number (under Properties).

To get started, ensure that your setup is working by running the regular PicoHarp 330 software. After closing
that, try the readily compiled demos supplied with the DLL. For first tests take one of the standard histogram-
ming demos. If this is working, your own programs should work as well. Note that the hard coded settings
may not be compatible with your experimental setup. Then the pre–compiled demos may not work as expec-
ted. Only the advanced LabVIEW demos allow to enter most of the settings interactively.

*) USB 3.0 was later renamed to USB 3.1 Gen 1 and is now called USB 3.2 Gen 1

Page 17

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

6.4. Access permissions
On some Windows installations you may need administrator rights to perform the DLL setup. If the setup is
performed by an administrator but used from other accounts without full access permission to all disk loca-
tions, these restricted accounts may no be able to run the demos in the default locations they have been in -
stalled to. In such cases it is recommended that you copy the demo directory or selected files from it to a ded-
icated development directory in which you have the necessary rights. Otherwise the administrator must give
full access to the demo directory. On some Windows versions it is possible to switch between user accounts
without shutting down the running applications. It is not advisable to start a PicoHarp 330 program if any other
program accessing the device is running in another user account that has been switched away. Doing so may
cause crashes or loss of data.

6.5. Version tracking
While PicoQuant will always try to maintain a maximum of continuity in further hardware and software devel-
opment, changes for the benefit of technical progress cannot always be avoided. It may therefore happen,
that data structures, calling conventions or program flow will change. In order to design programs that will re -
cognize such changes with a minimum of trouble we strongly recommend that you make use of the functions
provided for version retrieval of hardware and DLL. In any case your software should issue a warning if it de-
tects versions other than those it was tested with. Note that the call of PH330_GetLibraryVersion re-
turns only the major two digits of the version (e.g. 1.0). The library actually has two further sub–version digits,
so that the complete version number has four digits (e.g. 1.0.0.0). These sub–digits help to identify intermedi-
ate versions that may have been released for minor updates or bug fixes. The complete version number
shown only in the file properties of PH330Lib.DLL.

6.6. Software Updates
We constantly improve and update the software for our instruments. This includes updates of the configur-
able hardware (FPGA). Such updates are important as they may affect reliability and interoperability with
other products. The software updates are free of charge, unless major new functionality is added. It is
strongly recommended that you check for software updates before investing time into a larger programming
effort.

6.7. Bug Reports and Support
The PicoHarp 330 TCSPC system has gone through extensive testing. It builds on over 25 years of experi-
ence with several predecessor models and the feedback of hundreds of users. Nevertheless, it is a brand
new product and some bugs may still be found. In any case we would like to offer you our support if you ex -
perience problems with the system. Do not hesitate to contact PicoQuant in case of difficulties with your Pico-
Harp 330.

If you observe errors or bugs caused by the PicoHarp 330 system please try to find a reproducible error situ-
ation. Then prepare a detailed description of the problem and all relevant circumstances, especially the ver-
sions of the software you were using, the version of Windows and the serial number of your PicoHarp 330.
You can also run msinfo32 to obtain a listing of your PC configuration and attach the summary file to your
error report. Then use our support page at www.picoquant.com/contact/support to create a ticket. Alternat-
ively you can also write an email to support@picoquant.com. Your feedback will help us to improve the
product and documentation.

Of course we also appreciate good news: If you have obtained exciting results with one of our instruments,
please let us know, and where appropriate, please mention the instrument in your publications.

At our website we also maintain a large bibliography of publications referring to our instruments. It may serve
as a reference for you and other potential users. See http://www.picoquant.com/scientific/references. Please
kindly submit your publications for addition to this list.

Page 18

http://www.picoquant.com/scientific/references
mailto:support@picoquant.com
http://www.picoquant.com/contact/support

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

7. Appendix

7.1. Data Types
The PicoHarp programming library PH330Lib.DLL is written in C and its data types correspond to C / C++
data types with bit-widths as follows:

char 8 bit, byte (or characters in ASCII)

short int 16 bit signed integer

unsigned short int 16 bit unsigned integer

int
long int

32 bit signed integer

unsigned int
unsigned long int

32 bit unsigned integer

__int64
long long int

 64 bit signed integer

unsigned int64
unsigned long long int

 64 bit unsigned integer

float 32 bit floating point number

double 64 bit floating point number

Note also that on platforms other than the x86-64 architecture byte swapping may occur when binary Pico-
Harp 330 data files are read there for further processing. We recommend using the native x86-64 architecture
environment consistently.

7.2. Functions Exported by PH330Lib
See ph330defin.h for predefined constants given in capital letters in the following subsections here.
Note that these indeed are constants fixed at compile time of the library and that you cannot change them,
even if in some of the demo programs it might look like it.

Return values < 0 denote errors. See errorcodes.h for the possible error codes.

Note that PH330Lib is a multi-device library with the capability to control more than one PicoHarp 330 simul-
taneously. For this reason all device specific functions (i.e. the functions from section 7.2.2 on) take a device
index as their first argument.

Note also that functions taking a channel number as an argument expect the channels enumerated 0..N-1
while the regular interactive PicoHarp 330 software enumerates the channels 1..N as shown on the physical
front panel. This is for the efficiency of internal data structures and for consistency with earlier products.

Page 19

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

7.2.1. General Functions
These functions work independent from any device.

int PH330_GetLibraryVersion (char* vers);

arguments: vers: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

Note: Use this call to ensure compatibility of the library with your own application.

int PH330_GetErrorString (char* errstring, int errcode);

arguments: errstring: pointer to a buffer for at least 40 characters
errcode: error code returned from a PH330_xxx library call

return value: =0 success
<0 error

Note: This function is provided to obtain readable error strings that explain the cause of the error better than the numerical error
code. Use these in error handling message boxes, support enquiries etc.

7.2.2. Device Related Functions
All functions below are device related and require a device index.

int PH330_OpenDevice (int devidx, char* serial);

arguments: devidx: device index 0..7
serial: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

Note: Once a device is opened by your software it will not be available for use by other programs until you close it.

int PH330_CloseDevice (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: Closes and releases the device for use by other programs.

int PH330_Initialize (int devidx, int mode, int refsource);

arguments: devidx: device index 0..7
mode: measurement mode

0 = histogramming mode
2 = T2 mode
3 = T3 mode

refsource: reference clock to use
0 = use internal clock
1 = use 10 MHz external clock
2 = use 100 MHz external clock
3 = use 500 MHz external clock

Page 20

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

return value: =0 success
<0 error

Note: This routine must be called before any of the other routines below can be used. Note that some of them depend on the
measurement mode you select here. See the PicoHarp 330 manual for more information on the measurement modes.

7.2.3. Functions for Use on Initialized Devices
All functions below can only be used after PH330_Initialize was successfully called.

int PH330_GetHardwareInfo (int devidx, char* model, char* partno, char* version);

arguments: devidx: device index 0..7
model: pointer to a buffer for at least 24 characters
partno: pointer to a buffer for at least 8 characters
version: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int PH330_GetFeatures (int devidx, int* features);

arguments: devidx: device index 0..7
features: pointer to a buffer for an integer (actually a bit pattern)

return value: =0 success
<0 error

Note: You do not really need this function. It is mainly for integration in PicoQuant system software such as SymPhoTime in order
to figure out in a standardized way what capabilities the device has. If you want it anyway, use the bit masks from mhdefin.h
to evaluate individual bits in the pattern.

int PH330_GetSerialNumber (int devidx, char* serial);

arguments: devidx: device index 0..7
serial: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int PH330_GetBaseResolution (int devidx, double* resolution, int* binsteps);

arguments: devidx: device index 0..7
resolution: pointer to a double precision float (64 bit)

returns the base resolution in ps
binsteps: pointer to an integer,

returns the number of allowed binning steps

return value: =0 success
<0 error

Note: The base resolution of a device is its best possible resolution as determinded by the hardware. It also corresponds to the
timing resolution in T2 mode. In T3 and Histogramming mode it is possible to “bin down” the resolution (see PH330_Set-
Binning) The value returned in binsteps is the number of permitted binning steps. The range of values you can pass to
PH330_SetBinning is then 0..binsteps-1.

int PH330_GetNumOfInputChannels (int devidx, int* nchannels);

arguments: devidx: device index 0..7
nchannels: pointer to an integer,

returns the number of installed input channels

Page 21

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

return value: =0 success
<0 error

Note: The value returned in nchannels is the number of channels. The range of values you can pass to the library calls accept-
ing a channel number is then 0..nchannels-1.

int PH330_GetModuleInfo (int devidx, int* modelcode, int* versioncode);

arguments: devidx: device index 0..7
modelcode: pointer to an integer,

returns the model code of the module
versioncode: pointer to an integer,

returns the version code of the module

return value: =0 success
<0 error

Note: This routine is for retrieval of hardware version details. You only need this information for support enquiries.

int PH330_GetDebugInfo(int devidx, char *debuginfo);

arguments: devidx: device index 0..7
debuginfo: pointer to a buffer for at least 65536 characters

return value: =0 success
<0 error

Note: Use this call to obtain debug information. You can call it immediately after receiving an error code <0 from any library call. It
is of particular value after detecting a FLAG_SYSERROR from PH330_GetFlags. In case of FLAG_SYSERROR please
provide this information for support.

int PH330_SetSyncDiv (int devidx, int div);

arguments: devidx: device index 0..7
div: sync rate divider

(1, 2, 4, .., SYNCDIVMAX)

return value: =0 success
<0 error

Note: The sync divider must be used to keep the effective sync rate at values < 81 MHz. It should only be used with sync sources
of stable period. Using a larger divider than strictly necessary does not do great harm but it may result in slightly larger tim-
ing jitter. The readings obtained with PH330_GetCountRate and PH330_GetAllCountRates are internally corrected for
the divider setting and deliver the external (undivided) rate. The sync divider should not be changed while a measurement is
running.

int PH330_SetSyncTrgMode (int devidx, int mode);

arguments: devidx: device index 0..7
mode: 0 = TRGMODE_ETR = set edge trigger mode

1 = TRGMODE_CFD = set constant fraction discriminator mode

return value: =0 success
<0 error

Note: This call selects the sync channel’s trigger mode. Edge trigger mode is useful for pulses with repeatable shape, CFD mode
is useful for pulses with fluctuating amplitude but has a longer dead time. After the trigger mode has been changed it must
be (re-)configured via PH330_SetSyncEdgeTrg or PH330_SetSyncCFD, respectively.

Page 22

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

int PH330_SetSyncEdgeTrg(int devidx, int level, int edge);

arguments: devidx: device index 0..7
level: trigger level in mV TRGLVLMIN..TRGLVLMAX
edge: 0 = falling, 1 = rising

return value: =0 success
<0 error

Note: This call is meaningful and permitted only when the sync channel is in TRGMODE_ETR (see PH330_SetSyncTrgMode).

int PH330_SetSyncCFD(int devidx, int level, int zerocross);

arguments: devidx: device index 0..7
level: trigger level in mV CFDLVLMIN..CFDLVLMAX
zerocross: zero cross level in mV CFDZCMIN..CFDZCMAX

return value: =0 success
<0 error

Note: This call is meaningful and permitted only when the sync channel is in TRGMODE_CFD (see PH330_SetSyncTrgMode).

int PH330_SetSyncChannelOffset (int devidx, int value);

arguments: devidx: device index 0..7
value: sync timing offset in ps

minimum = CHANOFFSMIN
maximum = CHANOFFSMAX

return value: =0 success
<0 error

Note: This is equivalent to changing the cable delay on the sync input. Actual resolution is the device’s base resolution.

int PH330_SetSyncChannelEnable (int devidx, int enable);

arguments: devidx: device index 0..7
enable: desired enable state of the sync channel

0 = disabled
1 = enabled

return value: =0 success
<0 error

Note: This makes sense only in T2 mode. Histogramming and T3 mode need an active sync signal.

int PH330_SetSyncDeadTime (int devidx, int on, int deadtime);

arguments: devidx: device index 0..7
on: 0 = set minimal dead-time, 1 = activate extended dead-time
deadtime: extended dead-time in ps

minimum = EXTDEADMIN
maximum = EXTDEADMAX

return value: =0 success
<0 error

Note: This call is primarily intended for the suppression of afterpulsing artefacts of some detectors. Note that an extended dead-
time does not prevent the TDC from measuring the next event and hence enter a new dead-time. It only suppresses events
occuring within the extended dead-time from further processing. When an extended dead-time is set then it will also affect
the count rate meter readings. The actual extended dead-time is only approximated to the nearest step of the device’s base
resolution.

Page 23

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

int PH330_SetInputTrgMode (int devidx, int channel, int mode);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1
mode: 0 = TRGMODE_ETR = set edge trigger mode

1 = TRGMODE_CFD = set constant fraction discriminator mode

return value: =0 success
<0 error

Note: This call selects an input channel’s trigger mode. Edge trigger mode is useful for pulses with repeatable shape, CFD mode
is useful for pulses with fluctuating amplitude. After the trigger mode has been changed it must be configured via
PH330_SetInputEdgeTrg or PH330_SetInputCFD, respectively. The maximum input channel index must correspond to
nchannels-1 with nchannels obtained through PH330_GetNumOfInputChannels.

int PH330_SetInputEdgeTrg(int devidx, int channel, int level, int edge);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1
level: trigger level in mV TRGLVLMIN..TRGLVLMAX
edge: 0 = falling, 1 = rising

return value: =0 success
<0 error

Note: This call is meaningful and permitted only in TRGMODE_ETR (see PH330_SetInputTrgMode). The maximum input chan-
nel index must correspond to nchannels-1 with nchannels obtained through PH330_GetNumOfInputChannels.

int PH330_SetInputCFD(int devidx, int channel, int level, int zerocross);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1
level: trigger level in mV CFDLVLMIN..CFDLVLMAX
zerocross: zero cross level in mV CFDZCMIN..CFDZCMAX

return value: =0 success
<0 error

Note: This call is meaningful and permitted only in TRGMODE_ETR (see PH330_SetInputTrgMode). The maximum input chan-
nel index must correspond to nchannels-1 with nchannels obtained through PH330_GetNumOfInputChannels.

int PH330_SetInputChannelOffset (int devidx, int channel, int value);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1
value: channel timing offset in ps

minimum = CHANOFFSMIN
maximum = CHANOFFSMAX

return value: =0 success
<0 error

Note: This is equivalent to changing the cable delay on the chosen input. Actual offset resolution is the device’s base resolution.
The maximum input channel index must correspond to nchannels-1 where nchannels must be obtained through
PH330_GetNumOfInputChannels.

int PH330_SetInputChannelEnable (int devidx, int channel, int enable);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1
enable: desired enable state of the input channel

0 = disabled
1 = enabled

Page 24

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

return value: =0 success
<0 error

Note: The maximum channel index must correspond to nchannels-1 with nchannels obtained through PH330_GetNumOfIn-
putChannels.

int PH330_SetInputDeadTime (int devidx, int channel, int on, int deadtime);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1
on: 0 = set minimal dead-time, 1 = activate extended dead-time
deadtime: extended dead-time in ps

minimum = EXTDEADMIN
maximum = EXTDEADMAX

return value: =0 success
<0 error

Note: This call is primarily intended for the suppression of afterpulsing artefacts of some detectors. Note that an extended dead-
time does not prevent the TDC from measuring the next event and hence enter a new dead-time. It only suppresses events
occuring within the extended dead-time from further processing. When an extended dead-time is set for a channel then it will
also affect the corresponding count rate meter readings. Also note that the actual extended dead-time is only approximated
to the nearest step of the device’s base resolution.

int PH330_SetInputHysteresis (int devidx, int hystcode);

arguments: devidx: device index 0..7
deadtime: code for the hysteresis

0 = 3mV approx. (default)
1 = 35mV approx.

return value: =0 success
<0 error

Note: This call is intended for the suppression of noise or pulse shape artefacts of some detectors by setting a higher input hyster -
esis for the input edge triggers. The setting acts on all input channels simultaneously but it is without effect when an input is
in CFD mode. It is only available if the present hardware supports it and will return PH330_ERROR_INVALID_OPTION other-
wise.

int PH330_SetStopOverflow (int devidx, int stop_ovfl, unsigned int stopcount);

arguments: devidx: device index 0..7
stop_ofl: 0 = do not stop,

1 = do stop on overflow
stopcount: count level at which should be stopped

minimum = STOPCNTMIN
maximum = STOPCNTMAX

return value: =0 success
<0 error

Note: This setting is meaningful only in Histogramming Mode. It determines if a measurement run will stop when any channel
reaches the maximum set by stopcount. If stop_ofl is 0 the measurement will continue but counts above STOPCNTMAX
in any bin will be clipped.

int PH330_SetBinning (int devidx, int binning);

arguments: devidx: device index 0..7
binning: measurement binning code

minimum = 0 (smallest, i.e. base resolution)
maximum = (MAXBINSTEPS-1) (largest)

return value: =0 success
<0 error

Note: Binning only applies in Histogramming and T3 Mode. The binning code corresponds to repeated doubling, i.e.

Page 25

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

0 = 1x base resolution,
1 = 2x base resolution,
2 = 4x base resolution,
3 = 8x base resolution, and so on.

int PH330_SetOffset (int devidx, int offset);

arguments: devidx: device index 0..7
offset: histogram time offset in ns

minimum = OFFSETMIN
maximum = OFFSETMAX

return value: =0 success
<0 error

Note: This offset only applies in histogramming and T3 mode. It affects only the difference between stop and start before it is put
into the T3 record or is used to increment the corresponding histogram bin. It is intended for situations where the range of
the histogram is not long enough to look at “late” data. By means of the offset the “window of view” is shifted to a later range.
This is not the same as changing or compensating cable delays. If the latter is desired please use PH330_SetSyncChan-
nelOffset and/or PH330_SetInputChannelOffset.

int PH330_SetHistoLen (int devidx, int lencode, int* actuallen);

arguments: devidx: device index 0..7
lencode: histogram length code

minimum = 0
maximum = MAXLENCODE

actuallen: pointer to an integer,
returns the resulting length (bin count) of the histograms
calculated as 1024*(2^lencode)

return value: =0 success
<0 error

Note: This call is only meaningful in histogramming mode. It sets the number of bins of the collected histograms. The histogram
length obtained with MAXLENCODE is MAXHISTLEN while DFLTLENCODE results in DFLTHISTLEN (65536), which is the
default after initialization if PH330_SetHistoLen is not called.

int PH330_ClearHistMem (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: This clears the histogram memory of all channels. Only meaningful in histogramming mode.

int PH330_SetMeasControl (int devidx, int meascontrol, int startedge, int stopedge);

arguments: devidx: device index 0..7
meascontrol: measurement control code

0 = MEASCTRL_SINGLESHOT_CTC
1 = MEASCTRL_C1_GATED
2 = MEASCTRL_C1_START_CTC_STOP
3 = MEASCTRL_C1_START_C2_STOP
6 = MEASCTRL_SW_START_SW_STOP

startedge: edge selection code
0 = falling
1 = rising

stopedge: edge selection code
0 = falling
1 = rising

return value: =0 success
<0 error

Page 26

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

Note: This sets the measurement control mode and must be called before starting a measurement. The default after initialization
(if this function is not called) is 0, i.e. CTC controlled acquisition time. The modes 1..3 allow hardware triggered measure-
ments through TTL signals at the control port. Note that this needs custom software. For a guideline please see the ad-
vanced demos histomode_extcontrol. The mode MEASCTRL_SW_START_SW_STOP permits controlling the duration of
measurements purely by software and thereby overcoming the limit of 100h imposed by the hardware CTC. Note that in this
case the results of PH330_GetElapsedMeasTime will be less accurate.

int PH330_SetTriggerOutput(int devidx, int period);

arguments: devidx: device index 0..7
period: in units of 100ns, TRIGOUTMIN..TRIGOUTMAX, 0 = off

return value: =0 success
<0 error

Note: This can be used to set the period of the programmable trigger output. The period 0 switches it off. Observe laser safety
when using this feature for triggering a laser.

int PH330_StartMeas (int devidx, int tacq);

arguments: devidx: device index 0..7
tacq: acquisition time in milliseconds

minimum = ACQTMIN
maximum = ACQTMAX

return value: =0 success
<0 error

Note: If beforehand MEASCTRL_SW_START_SW_STOP is set via PH330_SetMeasControl, the parameter tacq will be ignored
and the measurement will run until PH330_StopMeas is called. This can be used to overcome the limit of 100 h imposed by
the hardware CTC. However, the results of PH330_GetElapsedMeasTime will in this case be less accurate as it can only
use the timers of the operating system.

int PH330_StopMeas (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: This call can be used to force a stop before the acquisition time expires. For clean-up purposes it must in any case be called
after a measurement, also if the measurement has expired on its own.

int PH330_CTCStatus (int devidx, int* ctcstatus);

arguments: devidx: device index 0..7
ctcstatus pointer to an integer,

returns the acquisition time state
0 = acquisition time still running
1 = acquisition time has ended

return value: =0 success
<0 error

Note: This call can be used to check if a measurement has expired or is still running.

int PH330_GetHistogram (int devidx, unsigned int *chcount, int channel);

arguments: devidx: device index 0..7
chcount pointer to an array of at least actuallen dwords (32bit)

where the histogram data can be stored
channel: input channel index 0..nchannels-1

Page 27

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

return value: =0 success
<0 error

Note: The histogram buffer size must correspond to the value actuallen obtained through PH330_SetHistoLen.
The maximum input channel index must correspond to nchannels-1 with nchannels obtained through PH330_GetNu-
mOfInputChannels.

int PH330_GetAllHistograms(int devidx, unsigned int *chcount);

arguments: devidx: device index 0..7
chcount: buffer for a multidimensional array of the form

 unsigned int histograms[nchannels][actuallen]

return value: =0 success
<0 error

Note: This can be used as a replacement for multiple calls to PH330_GetHistogram when all histograms are to be retrieved in
the most time-efficient way. The multidimensional array receiving the data must be dimensioned according to the number of
input channels of the device and the chosen histogram length. The corresponding value actuallen can be obtained
through PH330_SetHistoLen and nchannels can be obtained through PH330_GetNumOfInputChannels.

int PH330_GetResolution (int devidx, double* resolution);

arguments: devidx: device index 0..7
resolution: pointer to a double precision float (64 bit)

returns the resolution at the current binning
(histogram bin width) in ps

return value: =0 success
<0 error

Note: This is not meaningful in T2 mode.

int PH330_GetSyncRate (int devidx, int* syncrate);

arguments: devidx: device index 0..7
syncrate: pointer to an integer

returns the current sync rate

return value: =0 success
<0 error

Note: Allow at least 100 ms after PH330_Initialize or PH330_SetSyncDivider or any of the input configuration calls in or-
der to get a stable rate meter reading. Similarly, wait at least 100 ms to get a new reading. This is the gate time of the
counter.

int PH330_GetCountRate (int devidx, int channel, int* cntrate);

arguments: devidx: device index 0..7
channel: number of the input channel 0..nchannels-1
cntrate: pointer to an integer

returns the current count rate of this input channel

return value: =0 success
<0 error

Note: Allow at least 100 ms after PH330_Initialize to get a stable rate meter reading. Similarly, wait at least 100 ms to get a
new reading. This is the gate time of the counters. The maximum input channel index must correspond to nchannels-1
with nchannels obtained through PH330_GetNumOfInputChannels.

Page 28

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

int PH330_GetAllCountRates(int devidx, int* syncrate, int* cntrates);

arguments: devidx: device index 0..7
syncrate: pointer to an integer variable receiving the sync rate
cntrates: pointer to an array of integer variables of the form

 int cntrates[nchannels] receiving the input rates

return value: =0 success
<0 error

Note: This can be used as replacement of PH330_GetSyncRate and PH330_GetCountRate when all rates need to be retrieved
in an efficient manner. Make sure that the array cntrates is large enough for the number of input channels your device
has. The safest approach is to dimension it for MAXINPCHAN.

int PH330_GetFlags (int devidx, int* flags);

arguments: devidx: device index 0..7
flags: pointer to an integer

returns current status flags (a bit pattern)

return value: =0 success
<0 error

Note: Use the predefined bit mask values in ph330defin.h (e.g. FLAG_OVERFLOW) to extract individual bits through a bitwise
AND.

int PH330_GetElapsedMeasTime (int devidx, double* elapsed);

arguments: devidx: device index 0..7
elapsed: pointer to a double precision float (64 bit)

returns the elapsed measurement time in ms

return value: =0 success
<0 error

Note: This can be used to obtain the elapsed measurement time of a measurement. This relates to the current measurement when
still running or to the previous measurement when already finished. Note that when MEASCTRL_SW_START_SW_STOP is
used (controlling the duration of meaurements purely by software) the results of PH330_GetElapsedMeasTime will be less
accurate.

int PH330_GetWarnings (int devidx, int* warnings);

arguments: devidx: device index 0..7
warnings pointer to an integer

returns warnings, bitwise encoded (see ph330defin.h)

return value: =0 success
<0 error

Note: Prior to this call you must call either PH330_GetAllCountRates or call PH330_GetSyncRate and PH330_GetCout-
Rate for all channels. Otherwise the received warnings will at least partially be incorrect or incomplete.

int PH330_GetWarningsText (int devidx, char* text, int warnings);

arguments: devidx: device index 0..7
text: pointer to a buffer for at least 16384 characters

warnings: integer bitfield obtained from PH330_GetWarnings

return value: =0 success
<0 error

Note: This can be used to translate warnings obtained by PH330_GetWarnings to a human-readable text.

Page 29

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

int PH330_GetSyncPeriod (int devidx, double* period);

arguments: devidx: device index 0..7
period: pointer to a double precision float (64 bit)

returning the sync period in seconds

return value: =0 success
<0 error

Note: This call only gives meaningful results while a measurement is running and after two sync periods have elapsed.
The return value is undefined in all other cases. Resolution (unit) is that of the device’s base resolution. Accuracy is determ-
ined by single shot jitter and clock stability.

7.2.4. Special Functions for TTTR Mode

int PH330_ReadFiFo (int devidx, unsigned int* buffer, int* nactual);

arguments: devidx: device index 0..7
buffer: pointer to an array of TTREADMAX dwords (32bit)

where the retrieved TTTR data will be stored
nactual: pointer to an integer

returns the number of TTTR records received

return value: =0 success
<0 error

Note: The call will return typically after 10 ms and possibly less if no more data could be fetched. The latency behavior at input
rates close to zero is controlled by PH330_SetOflCompression. The actual time to return can also vary due to USB over-
head and unpredictable Windows latencies, especially when the PC or the USB connection is slow. The buffer must not be
accessed until the call returns.

int PH330_SetMarkerEdges (int devidx, int en1, int en2, int en3, int en4);

arguments: devidx: device index 0..7
me<n>: active edge of marker signal <n>,

0 = falling,
1 = rising

return value: =0 success
<0 error

Note: This can be used to change the active edge on which the external TTL signals connected to the marker inputs are triggering.
Only meaningful in TTTR mode.

int PH330_SetMarkerEnable (int devidx, int en0, int en1, int en2, int en3);

arguments: devidx: device index 0..7
en<n>: desired enable state of marker signal <n>,

0 = disabled,
1 = enabled

return value: =0 success
<0 error

Note: This can be used to enable or disable the external TTL marker inputs. Only meaningful in TTTR mode.

int PH330_SetMarkerHoldoffTime (int devidx, int holdofftime);

arguments: devidx: device index 0..7
holdofftime: hold-off time in ns (0..HOLDOFFMAX)

return value: =0 success
<0 error

Page 30

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

Note: This setting is not normally required but it can be used to deal with glitches on the marker lines. Markers following a previous
marker within the hold-off time will be suppressed. Note that the actual hold-off time is only approximated to about ±20 ns.

int PH330_SetOflCompression (int devidx, int holdtime);

arguments: devidx: device index 0..7
holdtime: hold time in ms (0..HOLDTIMEMAX)

return value: =0 success
<0 error

Note: This setting is not normally required but it can be useful when data rates are very low and there are more overflows than
photons. The hardware will then count overflows and only transfer them to the FiFo when holdtime has elapsed. The default
value is 2 ms. A value of zero means no compression. If you are implementing a real-time preview and data rates are very
low you may observe “stutter” when holdtime is chosen too large because then there is nothing coming out of the FiFo for
longer times. Whenever there is a true event record arriving (photons or markers) the previously accumulated overflows will
instantly be transferred. This may be the case merely due to dark counts, so the “stutter” would rarely occur. In any case you
can switch overflow compression off by setting holdtime 0. Have a look on the file demos to see how overflow records are
to be decoded. When compression is off the number of overflows in such a record is always 1. Otherwise it may grow to lar -
ger numbers.

7.2.5. Special Functions for TTTR Mode with Event Filtering
The library supports event filtering in hardware (see section 5.5). This helps to reduce USB bus load in TTTR
mode by eliminating photon events that carry no information of interest as typically found in many coincid -
ence correlation experiments. Please read the PicoHarp 330 manual for details.

int PH330_SetEventFilterParams(int devidx, int timerange, int matchcnt, int inverse);

arguments: devidx: device index 0..7
timerange: time distance in ps to other events to meet filter condition

(TIMERANGEMIN..TIMERANGEMAX)
matchcnt: number of other events needed to meet filter condition

(MATCHCNTMIN..MATCHCNTMAX)
inverse: set regular or inverse filter logic

0 = regular,
1 = inverse

return value: =0 success
<0 error

Note: This sets the parameters for the Event Filter implemented in the FPGA hardware. The value timerange determines the
time window the filter is acting on. The parameter matchcnt specifies how many other events must fall into the chosen time
window for the filter condition to act on the event at hand. The parameter inverse inverts the filter action, i.e. when the filter
would regularly have eliminated an event it will then keep it and vice versa. For the typical case, let it be not inverted. Then,
if matchcnt is 1 we obtain a simple ‘singles filter’. This is the most straight forward and most useful filter in typical quantum
optics experiments. It will suppress all events that do not have at least one coincident event within the chosen time range,
be this in the same or any other channel. In order to mark individual channel as ‘use’ and/or ‘pass’ please use
PH330_SetEventFilterChannels.The parameter settings are irrelevant as long as the filter is not enabled.

int PH330_SetEventFilterChannels(int devidx, int usechannels, int passchannels);

arguments: devidx: device index 0..7
usechannels: integer bitfield with bit0 = leftmost input channel,..

bit7 = rightmost input channel,
bit8 = sync channel,
bit9 and higher must be 0

bit value 1 = use this channel,
bit value 0 = ignore this channel

passchannels: integer bitfield with bit0 = leftmost input channel,..
bit7 = rightmost input channel,
bit8 = sync channel
bit9 and higher must be 0

bit value 1 = unconditionally pass this channel,
bit value 0 = pass this channel subject to filter condition

Page 31

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

return value: =0 success
<0 error

Note: This selects the filter channels. The bitfield usechannels is used to indicate if a channel is to be used by the filter. The bit-
field passchannels is used to indicate if a channel is to be passed through the filter unconditionally, whether it is marked
as ‘use’ or not. The events on a channel that is marked neither as ‘use’ nor as ‘pass’ will not pass the filter, provided the filter
is enabled. The settings for the sync channel are meaningful only in T2 mode and will be ignored in T3 mode. The channel
settings are irrelevant as long as the filter is not enabled. .

int PH330_EnableEventFilter(int devidx, int enable);

arguments: devidx: device index 0..7
enable: desired enable state of the filter

0 = disabled
1 = enabled

return value: =0 success
<0 error

Note: When the filter is disabled all events will pass. This is the default after initialization. When it is enabled, events may be
filtered out according to the parameters set with PH330_SetEventFilterParams and PH330_SetEventFilterChan-
nels.

int PH330_SetFilterTestMode(int devidx, int testmode);

arguments: devidx: device index 0..7
testmode: desired mode of the filter

0 = regular operation
1 = testmode

return value: =0 success
<0 error

Note: One important purpose of the event filters is to reduce USB load. When the input data rates are higher than the USB band-
with, there will at some point be a FiFo overrun. It may under such conditions be difficult to empirically optimize the filter set-
tings. Setting filter test mode disables all data transfers into the FiFo so that a test measurement can be run without interrup-
tion by a FiFo overrun. The library routines PH330_GetFilterInputRates and PH330_GeFilterOutputRates can
then be used to monitor the count rates before and after the filter. When the filtering effect is satisfactory the test mode can
be switched off again to perform the regular measurement.

int PH330_GetFilterInputRates(int devidx, int* syncrate, int* cntrates);

arguments: devidx: device index 0..7
syncrate: pointer to an integer variable receiving the sync rate
cntrates: pointer to an array of integer variables of the form

 int cntrates[num_channels] receiving the count rates

return value: =0 success
<0 error

Note: This call retrieves the count rates before entering the filter. A measurement must be running to obtain valid results. Allow at
least 100 ms to get a new reading. This is the gate time of the rate counters. Make sure that the array cntrates is large
enough for the number of input channels your device has. The safest approach is to dimension it for MAXINPCHAN.

int PH330_GetFilterOutputRates(int devidx, int* syncrate, int* cntrates);

arguments: devidx: device index 0..7
syncrate: pointer to an integer variable receiving the sync rate
cntrates: pointer to an array of integer variables of the form

 int cntrates[num_channels] receiving the count rates

return value: =0 success
<0 error

Page 32

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

Note: This call retrieves the count rates after the filter before entering the FiFo. A measurement must be running to obtain valid
results. Allow at least 100 ms to get a new reading. This is the gate time of the rate counters. Make sure that the array cn-
trates is large enough for the number of input channels your device has. The safest approach is to dimension it for MAX-
INPCHAN.

Page 33

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

7.3. Warnings
The following is related to the warnings (possibly) generated by the library routine PH330_GetWarnings.
The mechanism and warning criteria are the same as those used in the regular PicoHarp 330 software and
depend on the current count rates and the current measurement settings.

Note that the software can detect only a subset of all possible error conditions. It is therefore not safe to as-
sume “all is right” just by obtaining no warning. It is also necessary that PH330_GetSyncrate and
PH330_GetCoutrate have been called (the latter for all channels) before PH330_GetWarnings is called.
For speed you can use PH330_GetAllCoutrates instead.

The warnings are to some extent dependent on the current measurement mode. Not all warnings will occur in
all measurement modes. Also, count rate limits for a specific warning may be different in different modes. The
following table lists the possible warnings in the three measurement modes and gives some explanation as to
their possible cause and consequences.

Warning Histo Mode T2 Mode T3 Mode

WARNING_SYNC_RATE_ZERO

No counts are detected at the sync input. In histogramming
and T3 mode this is crucial and the measurement will not
work without this signal.

√ √

WARNING_SYNC_RATE_VERY_LOW

The detected pulse rate at the sync input is below 100 Hz and
cannot be determined accurately. Other warnings may not be
reliable under this condition.

√ √

WARNING_SYNC_RATE_TOO_HIGH

The pulse rate at the sync input (after the divider) is higher
than 81 MHz. This is close to the TDC limit. Sync events will
be lost above 82 MHz. T2 mode is normally intended to be
used without a fast sync signal and without a divider. If you
see this warning in T2 mode you may accidentally have con-
nected a fast laser sync.

√ √ √

WARNING_INPT_RATE_ZERO

No counts are detected at any of the input channels. In histo-
gramming and T3 mode these are the photon event channels
and the measurement will yield nothing. You might sporadic-
ally see this warning if your detector has a very low dark
count rate and is blocked by a shutter. In that case you may
want to ignore or disable this warning.

√ √ √

WARNING_INPT_RATE_TOO_HIGH

The overall pulse rate at the input channels is higher than 80
MHz (USB 3.0 connection) or higher than 9 MHz (USB 2.0
connection). This is close to the throughput limit of the present
USB connection. The measurement will likely lead to a FIFO
overrun. There are some rare measurement scenarios where
this condition is expected and the warning can be ignored or
disabled. Examples are measurements where the FIFO can
absorb all data of interest before it overflows.

√ √ √

Page 34

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

WARNING_INPT_RATE_RATIO

This warning is issued in histogramming and T3 mode when
the rate at any input channel is higher than 5% of the sync
rate. This is the classical pile-up criterion. It will lead to notice-
able dead-time artefacts. There are rare measurement scen-
arios where this condition is expected and the warning can be
ignored or disabled. Examples are antibunching measure-
ments or rapidFLIM where pile-up is either tolerated or correc-
ted for during data analysis. One can usually also ignore this
warning when the current time bin width is larger than the
dead-time.

√ √

WARNING_DIVIDER_GREATER_ONE

In T2 mode:

The sync divider is set larger than 1. This is probably not in-
tended. The sync divider is designed primarily for high sync
rates from lasers and requires a fixed pulse rate at the sync
input. In that case you should use T3 mode. If the signal at
the sync input is from a photon detector (coincidence correla-
tion etc.) a divider > 1 will lead to unexpected results. There
are rare measurement scenarios where this condition is inten-
tional and the warning can be ignored or disabled.

In histogramming and T3 mode:

If the pulse rate at the sync input is below 81 MHz then a
sync divider > 1 is not needed. The measurement may yield
unnecessary jitter if the sync source is not very stable.

√ √ √

WARNING_TIME_SPAN_TOO_SMALL

This warning is issued in histogramming and T3 mode when
the sync period (1/SyncRate) is longer that the start to stop
time span that can be covered by the histogram or by the T3
mode records. You can calculate this time span as follows:

 Span = Resolution * Length

Length is 32768 in T3 mode. In histogramming mode it
depends on the chosen histogram length (default is 65536).
Events outside this span will not be recorded. There are some
measurement scenarios where this condition is intentional
and the warning can be ignored or disabled.

√ √

WARNING_OFFSET_UNNECESSARY

This warning is issued in histogramming and T3 mode when
an offset >0 is set even though the sync period (1/SyncRate)
can be covered by the measurement time span (see
calculation above) without using an offset. The offset may
lead to events getting discarded. There are some
measurement scenarios where this condition is intentional
and the warning can be ignored or disabled.

√ √

WARNING_COUNTS_DROPPED

This warning is issued when the front end of the data
processing pipeline was not able to process all events that
came in. This will occur typically only at very high count rates
during intense bursts of events.

√ √ √

Page 35

PicoQuant GmbH PicoHarp 330 PH330Lib Programming Library - v.1.0.0.0

WARNING_USB20_SPEED_ONLY

The PicoHarp 330 is designed for USB 3.0 superspeed
(5Gbits/s). This warning is issued when the device is
connected only at the speed of USB 2.0 (480Mbits/s). This
works but will result in severely limited throughput. Check
USB ports and cables in use. The same issue is indicated by
the USB status LED showing yellow instead of green.

√ √ √

If any of the warnings you receive indicate wrong pulse rates, the cause may be inappropriate input settings,
wrong pulse polarities, poor pulse shapes or bad connections. If in doubt, check all signals with an oscillo-
scope of sufficient bandwidth.

Page 36

All information given here is reliable to our best knowledge. However, no responsibility is assumed for possible inaccuracies
or omissions. Specifications and external appearances are subject to change without notice.

PicoQuant GmbH
Rudower Chaussee 29 (IGZ)
12489 Berlin
Germany

P +49-(0)30-1208820-0
F +49-(0)30-1208820-90
info@picoquant.com
http://www.picoquant.com

	1. Introduction
	2. General Notes
	2.1. Scope and Compatibility
	2.2. What’s new in this Version
	2.3. Warranty and Legal Terms
	Disclaimer
	License and Copyright Notice

	3. Installation of the PH330Lib Software Package
	4. The Demo Applications
	4.1. Functional Overview
	Histogramming Mode Demos
	TTTR Mode Demos
	Advanced Demos

	4.2. The Demo Applications by Programming Language
	The C / C++ Demos
	The Delphi / Lazarus Demos
	The Python Demos
	The LabVIEW Demos
	The MATLAB Demos

	5. Advanced Techniques
	5.1. Efficient Data Transfer
	5.2. Instant TTTR Data Processing
	5.3. Working with Warnings
	5.4. Hardware Triggered Measurements
	5.5. Working with Event Filtering
	5.6. Using Multiple Devices

	6. Problems, Tips & Tricks
	6.1. PC Performance Requirements
	6.2. USB Interface
	6.3. Troubleshooting
	6.4. Access permissions
	6.5. Version tracking
	6.6. Software Updates
	6.7. Bug Reports and Support

	7. Appendix
	7.1. Data Types
	7.2. Functions Exported by PH330Lib
	7.2.1. General Functions
	7.2.2. Device Related Functions
	7.2.3. Functions for Use on Initialized Devices
	7.2.4. Special Functions for TTTR Mode
	7.2.5. Special Functions for TTTR Mode with Event Filtering

	7.3. Warnings

