
MultiHarp

Multichannel Time–Correlated
Single Photon Counting Systems
and High-Speed Time Taggers

User's Manual

Version 3.1.0.0

MHLib – Programming Library
for Custom Software Development

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

Table of Contents
1. Introduction.. 3

2. General Notes.. 4

2.1. What’s new in this Version...4

2.2. Warranty and Legal Terms...4

3. Installation of the MHLib Software Package...6

4. The Demo Applications.. 7

4.1. Functional Overview... 7

4.2. The Demo Applications by Programming Language...8

5. Advanced Techniques.. 13

5.1. Using Multiple Devices... 13

5.2. Efficient Data Transfer.. 13

5.3. Instant TTTR Data Processing...14

5.4. Working with Warnings... 15

5.5. Hardware Triggered Measurements...15

5.6. Working with the External FPGA Interface...16

5.7. Working with Event Filtering...16

6. Problems, Tips & Tricks.. 18

6.1. PC Performance Requirements...18

6.2. USB Interface... 18

6.3. Troubleshooting... 18

6.4. Access permissions... 19

6.5. Version tracking... 19

6.6. Software Updates... 19

6.7. Bug Reports and Support... 19

7. Appendix.. 20

7.1. Data Types... 20

7.2. Functions Exported by MHLib.DLL...20

7.2.1. General Functions.. 21

7.2.2. Device Related Functions..21

7.2.3. Functions for Use on Initialized Devices...22

7.2.4. Special Functions for TTTR Mode..31

7.2.5. Special Functions for TTTR Mode with Event Filtering...32

7.2.6. Special Functions for White Rabbit..35

7.2.7. Special Functions for the External FPGA Interface..37

7.3. Warnings.. 39

Page 2

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

1. Introduction
The MultiHarp is a cutting edge Time-Correlated Single Photon Counting (TCSPC) system with USB 3.0 inter-
face. Its new integrated design provides a flexible number of high performance input channels at reasonable
cost and enables innovative measurement approaches. The timing circuits allow high measurement rates up
to 78 million counts per second (Mcps) with an excellent time resolution and a world record dead-time of only
650 ps. Timing resolution (depending on the chosen model) can be down to 5 ps. The USB interface provides
very high throughput as well as ‘plug and play’ installation. The input triggers are adjustable for a wide range
of input signals providing programmable level triggers for both negative and positive going signals. These
specifications qualify the MultiHarp for use with most common single photon detectors such as Single Photon
Avalanche Diodes (SPADs) and Photomultiplier Tube (PMT) modules as well as superconducting nanowire
detectors (via preamplifier). Depending on detector and excitation source the width of the overall Instrument
Response Function (IRF) can be as small as 90 ps FWHM. The MultiHarp can be purchased in different ver-
sions with up to 64 timing inputs and one synchronization (sync) input. The use of these inputs is very flex -
ible. In fluorescence lifetime applications the sync channel is typically used as a synchronization input from a
laser. The other inputs are then used for photon detectors. In coincidence correlation applications all inputs
can be used for photon detectors.

The MultiHarp can operate in various modes to adapt to different measurement needs. The standard histo-
gram mode performs real–time histogramming in device memory. Two different Time–Tagged–Time–Re-
solved (TTTR) modes allow recording each photon event on separate, independent channels, thereby provid-
ing unlimited flexibility in off–line data analysis such as burst detection and time–gated or lifetime weighted
Fluorescence Correlation Spectroscopy (FCS) as well as picosecond coincidence correlation, using the indi-
vidual photon arrival times. The MultiHarp is furthermore supported by a variety of accessories such as pre–
amplifiers, signal adaptors and detector assemblies from PicoQuant. A significant novel feature of the Multi-
Harp is support for White Rabbit, allowing time transfer and synchronization with sub-ns accuracy over long
distances (see https://en.wikipedia.org/wiki/The_White_Rabbit_Project).

For more information on the MultiHarp hardware and software please consult the MultiHarp manual. For de-
tails on the method of Time–Correlated Single Photon Counting, please refer to our TechNote on TCSPC.

The MultiHarp standard software provides functions such as the setting of measurement parameters, display
of results, loading and saving of measurement parameters and histogram curves. Important measurement
characteristics such as count rate, count maximum and position, histogram width (FWHM) are displayed con-
tinuously. While these features will meet many of the routine requirements, advanced users may want to in-
clude the MultiHarp’s functionality in their own automated measurement systems with their own software. In
particular where the measurement must be interlinked or synchronized with other processes or instruments
this approach may be of interest. For this purpose a programming library is provided as a Dynamic Link Lib-
rary (DLL) for Windows.

The library supports custom programming in all major programming languages, notably C / C++, C#,
Delphi / Pascal, Python, LabVIEW and MATLAB. This manual describes the installation and use of the Multi-
Harp programming library and explains the associated demo programs. Please read both this library manual
and the MultiHarp manual before beginning your own software development with the DLL. The MultiHarp is a
sophisticated real–time measurement system. In order to work with the system using the DLL, sound know-
ledge in your chosen programming language is required.

Page 3

https://en.wikipedia.org/wiki/The_White_Rabbit_Project

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

2. General Notes
This version of the MultiHarp programming library is suitable for Windows 8.1, 10 and 11. Windows 7 may still
work but is no longer actively supported.

The library has been tested with MinGW 2.0 (32 bit), MinGW-W64 4.3.5 (64 bit), MSVC++ 6.0 (32 bit), Visual
C++ 2015, and 2019 (32/64 bit), Visual C# 2013 and 2019 (32/64 bit), Mono 5.14.0. and 6.8.0, Delphi 10.1
and 10.2 (32/64 bit), Lazarus 1.8.4 and 2.0.8 + FreePascal 3.0.4 (32/64 bit), Python 3.9.5 and 3.9.7
(32/64 bit), LabVIEW 2020 (32/64 bit), and MATLAB R2019a (32/64 bit).

There is also a library version for Linux (x86-64 architecture only) which is fully compatible with that for Win-
dows so that applications can easily be ported across the two platforms. See the separate Linux manual.

This manual assumes that you have read the MultiHarp manual, references to it will be made where neces-
sary. It is also assumed that you have solid experience with the chosen programming language. Our support
cannot teach programming fundamentals.

Note that despite of our efforts to keep changes minimal, data structures, program flow and function calls
may still change in future versions without advance notice. Users must maintain appropriate version checking
in order to avoid incompatibilities. There is a function call that you can use to retrieve the version number
(see section 7.2). Note that this call returns only two digits (major and minor) of the version (e.g. presently
3.1). The DLL actually has two further sub–version digits, so that the complete version number has four digits
(e.g. presently 3.1.0.0). They are shown only in the Windows file properties. These sub–digits help to identify
intermediate versions that may have been released for minor updates or bug fixes. The interface of releases
with identical major version will remain the same. The minor version is typically incremented when there are
new features or functions added without breaking compatibilty in regard to the original interface of the corres-
ponding major release. The rightmost digit of the complete version number usually increments to indicate
bugfix releases of otherwise identical interface and functionality.

2.1. What’s new in this Version
The new version 3.1.0.0 of the library now supports event filtering in hardware (see section 5.7). This helps to
reduce USB bus load in TTTR mode by eliminating photon events that carry no information of interest as typ-
ically found in many coincidence correlation experiments. The new version now also supports compression of
overflow records in TTTR mode and enables a mild compression by default. This helps to reduce file size in
cases (or periods) where photon rates are very low and the data stream would consist only of overflow re -
cords (see MH_SetOflCompression in section 7.2.4). The new version furthermore provides a new func-
tion MH_SetSyncChannelEnable in analogy to MH_SetInputChannelEnable (see section 7.2.3). An-
other new feature is the possibilty of controlling the duration of meaurements purely by software and thereby
overcoming the limit of 100 hours imposed by the hardware CTC (see MH_SetMeasControl in section
7.2.3). Apart from these new features the API as found in v. 3.0.0.0 remains unchanged. Users upgrading ex-
isting code to use the new library will typically only need to change the part of their code where the version
number is checked.

Should you still be using a version older than 3.0.0.0 an upgrade is strongly recommended as in earlier ver -
sions the call of some White Rabbit functions might damage the content of the device EEPROM. Version
3.0.0.0 and higher also fixes an issue of MH_ReadFifo taking very long to return.

The new version 3.1.0.0 of the library also comes with an extended set of programming demos, most import-
antly with advanced demos showing how to process TTTR data on the fly (see sections 4 and 5.3).

2.2. Warranty and Legal Terms

Disclaimer

PicoQuant GmbH disclaims all warranties with regard to the supplied software and documentation including
all implied warranties of merchantability and fitness for a particular purpose. In no case shall Pi-
coQuant GmbH be liable for any direct, indirect or consequential damages or any material or immaterial dam-
ages whatsoever resulting from loss of data, time or profits; arising from use, inability to use, or performance
of this software and associated documentation.

Page 4

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

License and Copyright Notice

With the MultiHarp hardware product you have purchased a license to use the MultiHarp software. You have
not purchased any other rights to the software itself. The software is protected by copyright and intellectual
property laws. You may not distribute the software to third parties or reverse engineer, decompile or disas-
semble the software or part thereof. You may use and modify demo code to create your own software. Ori -
ginal or modified demo code may be re–distributed, provided that the original disclaimer and copyright notes
are not removed from it. Copyright of this manual and on–line documentation belongs to PicoQuant GmbH.
No parts of it may be reproduced, translated or transferred to third parties without written permission of Pi-
coQuant GmbH.

Products and corporate names appearing in this manual may or may not be registered trademarks or subject
to copyrights of their respective owners. PicoQuant GmbH claims no rights to any such trademarks. They are
used here only for identification or explanation and to the owner’s benefit, without intent to infringe.

Acknowledgements

The MultiHarp hardware in its current version of March 2022 uses the White Rabbit PTP core v. 4.0
(https://www.ohwr.org/projects/wr-cores/wiki/wrpc-release-v40) licensed under the CERN Open Hardware Li-
cence v1.1 and its embedded WRPC software (https://www.ohwr.org/projects/wrpc-sw/wiki s / home) licensed
under GPL Version 2, June 1991. The WRPC software was minimally modified and in order to meet the li -
censing terms the modified WRPC source code is provided as part of the MultiHarp software distribution me-
dia.

Page 5

https://www.ohwr.org/projects/wrpc-sw/wikis/home
https://www.ohwr.org/projects/wrpc-sw/wikis/home
https://www.ohwr.org/projects/wrpc-sw/wikis/home
https://www.ohwr.org/projects/wrpc-sw/wikis/home
https://www.ohwr.org/projects/wr-cores/wiki/wrpc-release-v40

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

3. Installation of the MHLib Software Package
MHLib and its demos will not be installed by the standard MultiHarp software setup. The standard "interact-
ive" MultiHarp data acquisition software does not require the DLL, which is provided for custom application
programming only. Vice versa, your custom program will only require the DLL and the driver, but not the
standard MultiHarp data acquisition software. Installing both the standard MultiHarp software and DLL–based
custom programs on the same computer is possible, but only one program at a time can use the MultiHarp.

To install MHLib, please back up your work, then disconnect the MultiHarp device(s) and uninstall any previ-
ous versions of MHLib. Then run the setup program SETUP.EXE in the MHLib folder from the installation me-
dia. If you received the setup files as a ZIP archive, please unpack them to a temporary directory on your
hard disk and run SETUP.EXE from there. On some versions of Windows you may need administrator rights
to perform the setup. If the setup is performed by an administrator but used from other accounts without full
access permission to all disk locations, these restricted accounts may not be able to run the demos in the de-
fault locations they have been installed to. In such cases it is recommended that you copy the demo folder (or
selected files from it) to a dedicated development folder, in which you have the necessary rights (e.g., in ‘My
Documents’).

You also need to install the MultiHarp device if you have not done so before (see your MultiHarp manual).
The programming library will access the MultiHarp through a dedicated device driver. The driver is installed
together with the library by SETUP.EXE and is then instantly ready to use. Depending on your Windows ver-
sion you may be prompted to confirm the final driver installation when the device is connected for the first
time. Both the standard MultiHarp software distribution as well as the MHLib distribution media contain the
driver and will install it in the dedicated location that Windows maintains for this purpose.

Note that multiple devices can be controlled through MHLib. After connecting the device(s) you can use the
Windows Device Manager to check if they have been detected (under the USB tree) and the driver is cor-
rectly installed. On some Windows versions you may need administrator rights to perform setup tasks. Refer
to your MultiHarp manual for other installation details.

It is recommended to start your work with the MultiHarp by using the standard interactive MultiHarp data ac-
quisition software. This should give you a better understanding of the system’s operation before attempting
your own programming efforts. It also ensures that your optical / electrical setup is working. See the subfolder
\demos in your MHLib installation folder for sample code that can be used as a starting point for your own
programs. Please copy the demos to a working directory where you have write permission. Inside the installa-
tion folder this is typically not the case.

The MHLib package provides both 32-bit and 64-bit versions of the library. On a 64-bit Windows the setup
program will install both versions of the DLL. On a 32-bit Windows it will only install the 32-bit version. Note
that the 32-bit version of the DLL is named MHLib.dll while the 64-bit version is named MHLib64.dll. This is to
avoid confusions between the two. As a consequence of the different names the demo code is version de-
pendent and will be installed in two separate folders for 32-bit and 64-bit. For reference and comparison the
demos will always be fully installed in both versions but obviously the 64-bit versions will not run on a 32-bit
version of Windows.

If you wish to uninstall the library you should first of all back–up custom files you might have created in the in-
stallation folder. Do not manually delete any program files from the installation folder as it will render a clean
uninstall impossible. Also do not delete any driver files manually.

To uninstall the library from your PC you may need administrator rights (depending on Windows version and
security settings). Go to Control Panel > Programs and Features and select PicoQuant – MultiHarp - MHLib
vx.x for un–installation. This will remove all files that were installed by the setup program but not the user data
that may have been stored. If there was user data in the installation folders these will not be deleted. If inten -
ded, you will have to delete these files or folders manually.

Note that un–installation of the data acquisition software does not uninstall the device driver since other soft -
ware may still need it. If need be you can delete the driver software from within Device Manager.

Page 6

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

4. The Demo Applications

4.1. Functional Overview
Please note that all demo code provided is correct to the best of our knowledge. However, we must disclaim
all warranties as to fitness for a particular purpose of this code. It is provided ‘as is’ for no more than explanat-
ory purposes and a starting point for your own work.

The demos are kept as simple as possible to maintain focus on the key issues of accessing the library. This is
why most of the demos have a minimalistic user interface and / or must be run from the command line (cmd).
For the same reason, the measurement parameters are mostly hard–coded and thereby fixed at compile
time. It is therefore necessary to change the source code and re–compile the demos in order to run them in a
way that is matched to your individual measurement setup. Running them unmodified will probably result in
useless data (or none at all) because of inappropriate sync divider, resolution, input level settings, etc. In or-
der to understand these settings it is strongly recommended that you read the MultiHarp manual and try them
out using the regular MultiHarp software.

For the reason of simplicity, most of the demos will always only use the first MultiHarp device they find, al-
though the library can support multiple devices. In selected programming languages (C, C#) there is an ad-
vanced demo showing how to use multiple devices in TTTR mode. If you wish to use some other demo with
more than one MultiHarp you need to modify the code accordingly (see section 5.1).

None of the demos currently show how to use White Rabbit. Nevertheless it should be possible to get an un -
derstanding on how this is done by looking at the White Rabbit Dialog in the regular MultiHarp software,
which uses the same basic library routines as documented in section 7.2. Please contact PicoQuant if you
need further help using White Rabbit.

There are demos for C / C++, C#, Delphi / Pascal, Python, LabVIEW and MATLAB. For each of these pro-
gramming languages / systems there are different demo versions for the different measurement modes:

Histogramming Mode Demos

These demos show how to use the standard measurement mode for on–board histogramming. These are the
simplest demos and the best starting point for your own experiments. In case of LabVIEW there are a simple
and an advanced demo, the latter being more sophisticated and allowing interactive input of most parameters
on the fly. In some programming languages (C, C#) there are also advanced demos to show hardware
triggered measurements.

TTTR Mode Demos

These demos show how to use TTTR mode, i.e. recording individual photon events instead of forming histo-
grams on board. This permits sophisticated data analysis methods, such as single molecule burst detection,
the combination of fluorescence lifetime measurement with FCS and picosecond coincidence correlation or
even Fluorescence Lifetime Imaging (FLIM).

The MultiHarp actually supports two different Time–Tagging modes, T2 and T3 mode. When referring to both
modes together we use the general term TTTR here. For details on the two modes, please refer to your Multi-
Harp manual. In TTTR mode it is also possible to record external TTL signal transitions as markers in the
TTTR data stream (see the MultiHarp manual) which is typically used e.g., for FLIM.

Because TTTR mode requires real–time processing and / or real–time storing of data, the TTTR demos are
more demanding both in programming skills and computer performance. Also consider the speed perform-
ance of your programming language. Interpreted Python and Matlab, for example, are very slow. For more in-
formation on TTTR mode consult the corresponding section in your MultiHarp manual.

Note that you must not call any of the MH_Setxxx routines while a TTTR measurement is running. The result
would potentially be loss of events in the TTTR data stream. Changing settings during a measurement makes
no sense anyway, since it would introduce inconsistency in the collected data.

Details on how to interpret and process the TTTR records can be studied in the advanced LabVIEW demos
and in the advanced demos tttrmode_instant_processing (C, Python, Delphi, C#). You may also
consult the file demo code installed together with the regular MultiHarp software.

Page 7

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

4.2. The Demo Applications by Programming Language
As outlined above, there are demos for C / C++, Delphi / Pascal, Python, LabVIEW and MATLAB. For each of
these programming languages there are different demo versions for the measurement modes listed in the
previous section. They are not 100% identical. For some programming languages (C, Python, Delphi, C#,
LabVIEW) there are also some advanced demos, typically residing in a subfolder advanced. In this context
see section 5 on advanced techniques.

This manual explains the special aspects of using the MultiHarp programming library, it does NOT teach you
how to program in the chosen programming language. We strongly recommend that you do not choose to de-
velop a software project with the MultiHarp library as your first attempt at programming. In any case, study
the basic demos before trying the advanced demos. You will also need some knowledge about Windows DLL
concepts and calling conventions. The ultimate reference for details about how to use the DLL is in any case
the source code of the demos and the header files of MHLib (mhlib.h and mhdefin.h).

Be warned that wrong parameters and / or variables, invalid pointers and buffer sizes, inappropriate calling
sequences etc. may crash your application and / or your complete computer. The latter is quite unlikely but it
may happen, even for relatively safe operating systems, because you are accessing a kernel mode driver
through MHLib. This driver has high privileges at kernel level, that all have the power to do damage if used
inappropriately. Make sure to backup your data and / or perform your development work on a dedicated ma-
chine that does not contain valuable data. Note that the DLL is not re–entrant w.r.t. an individual device in-
stance. This means, it cannot be accessed from multiple, concurrent processes or threads at the same time
unless separate device instances are being used. All calls to one device instance must be made sequentially,
preferably in the order shown by the demos.

Note that for the 64-bit versions different names apply. The main 64-bit DLL file is named MHLib64.dll and
the 64-bit link library is named MHLib64.lib. This is to avoid confusion between the two versions. As a con-
sequence of the different names the demo code is version dependent and will be installed in two separate
folders: One for 32-bit and one for 64-bit. Nevertheless some of the demos are actually identical for 32-bit
and for 64-bit and the code handles the distinction between 32-bit and 64-bit versions internally. In the follow-
ing we use only the 32-bit library names without the suffix 64.

The C / C++ Demos

These demos are provided in the C subfolder. The code is actually plain C to provide the smallest common
denominator for C and C++. Consult mhlib.h, mhdefin.h and this manual for reference on the library
calls. The library functions must be declared as extern "C" when used from C++. This is achieved most
elegantly by wrapping the entire include statements for the library headers:

extern "C"

{

 #include "mhdefin.h"

 #include "mhlib.h"

}

In order to make the exports of MHLib.dll known to the rest of your application you may use MHLib.exp
or link directly with the import library MHLib.lib. MHLib.lib was created for MSVC 6.0 or higher, with
symbols decorated in Microsoft style. The DLL also (additionally) exports all symbols undecorated, so that
other compilers should be able to use them conveniently, provided they understand the Microsoft LIB format
or they can create their own import library. The MinGW compiler understands the Microsoft format.

To test any of the demos, consult the MultiHarp manual for setting up your MultiHarp and establish a meas-
urement setup that runs correctly and generates useable test data. Compare the settings (notably sync di-
vider, binning and trigger levels) with those used in the demo and use the values that work in your setup
when building and testing the demos. Observe the mode input variable going into MH_Initialize. It makes
a difference if you run T2 or T3 mode. For instance, T2 mode will not allow you to work with high sync rates.
For meaningful measurements you will need to adjust the sync divider and the resolution (binning) dependent
on your choice of mode.

Page 8

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

The C demos are designed to run in a cmd console. They need no command line input parameters. They cre-
ate their output files in their current working directory. The output files will be ASCII–readable only in case of
the standard histogramming demos and some of the advanced demos. For the histogramming demo, the
output files will contain multiple columns of integer numbers representing the counts from the 65,536 histo -
gram bins. You can use any editor or a data visualization program to inspect the ASCII histograms. In the
simplest TTTR mode demo the output is stored in binary format for simplicity and performance reasons. The
binary files must be read by dedicated programs according to the format they were written in. The file demos
(provided by way of the regular MultiHarp software installation) for reading the MultiHarp TTTR data files
(.PTU) and the advanced demos tttrmode_instant_processing can be used as a starting point to
learn this. The file read demos cannot be used directly on the demo output because they expect a file header
the demos do not generate. This is intentional in order to keep the MHLib demos focused on the key issues of
using the library.

The C# Demos

The C# demos are provided in the Csharp subfolder. They have been tested with MS Visual Studio as well
as with Mono.

Calling a native DLL (unmanaged code) from C# requires the DllImport attribute and correct type specific-
ation of the parameters. Not all types are easily portable. Especially C strings require special handling. The
demos show how to do this.

With the C# demos you also need to check whether the hard-coded settings are suitable for your actual in -
strument setup. The demos are designed to run in a cmd console. They need no command line input para-
meters. They create their output files in their current working directory. The output files will be ASCII in case
of the histogramming demo and some of the advanced demos. In the simplest TTTR mode demo the output
is stored in binary format for simplicity and performance reasons. The ASCII files of the histogramming demo
will contain single or multiple columns of integer numbers representing the counts from the histogram chan-
nels. You can use any editor or a data visualization program to inspect the ASCII histograms. The binary files
must be read by dedicated programs according to the format they were written in. The file read demos
provided for the MultiHarp TTTR data files (.PTU) and the advanced demo tttrmode_instant_pro-
cessing can be used as a starting point to learn this. The file read demos cannot be used directly on the
demo output because they expect a file header the demos do not generate. This is intentional in order to
keep the MHLib demos focused on the key issues of using the library.

Observe the mode input variable going into MH_Initialize. It makes a difference if you run T2 or
T3 mode. For instance, T2 mode will not allow you to work with high sync rates. For meaningful measure-
ments you will need to adjust the sync divider and the resolution (binning) dependent on your choice of mode.

The Delphi / Lazarus Demos

Users of Delphi or FreePascal / Lazarus please refer to the Delphi folder. The source code for Delphi and
Lazarus is the same. Everything for the respective Delphi demo is in the project file for that demo (*.DPR).
Lazarus users can use the *.LPI files that refer to the same *.DPR files.

In order to make the exports of MHLib.dll known to your application you have to declare each function in
your Pascal code as ‘external’. This is already prepared in the demo source code. MHLib.dll was created
with symbols decorated in Microsoft style. It additionally exports all symbols undecorated, so that you can call
them from Delphi with the plain function name. Please check the function parameters of your code against
mhlib.h in the demo directory whenever you update to a new DLL version.

The Delphi / Lazarus demos are also designed to run in a cmd console. They need no command line input
parameters. They create output files in their current working directory. The output files of the will be ASCII in
case of the histogramming demo and some of the advanced demos. In the simplest TTTR mode demo the
output is stored in binary format for simplicity and performance reasons. You can use any data visualization
program to inspect the ASCII histograms. The binary files must be read by dedicated programs according to
the format they were written in. The file read demos for the regular MultiHarp TTTR data files (.PTU) and the
advanced demo tttrmode_instant_processing can be used as a starting point to learn this. The file
read demos cannot be used directly on the demo output because they expect a file header the demos do not
generate. This is intentional in order to keep the MHLib demos focused on the key issues of using the library.

Page 9

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

Observe the mode input variable going into MH_Initialize. It makes a difference if you run T2 or
T3 mode. For instance, T2 mode will not allow you to work with high sync rates. For meaningful measure-
ments you will need to adjust the sync divider and the resolution (binning) dependent on your choice of mode.

The Python Demos

The Python demos are in the Python folder. Python users should start their work in histogramming mode
from histomode.py. The code should be fairly self explanatory. If you update to a new DLL version please
check the function parameters of your existing code against mhlib.h in the MHLib installation directory. Note
that special care must be taken where pointers to C–arrays are passed as function arguments.

The Python demos create output files in their current working directory. The output file will be readable text in
case of the standard histogramming demo and some of the advanced demos. The histogramming demo out-
put files will contain columns of integer numbers representing the counts from the histogram channels. You
can use any data visualization program to inspect the histograms. In the simplest TTTR mode demo the out-
put is stored in binary format for performance reasons. The binary files must be read by dedicated programs
according to the format they were written in. The file read demos for the regular MultiHarp TTTR data files
(.PTU) and the advanced demo tttrmode_instant_processing can be used as a starting point to learn
this. The file read demos cannot be used directly on the demo output because they expect a file header the
demos do not generate. This is intentional in order to keep the MHLib demos focused on the key issues of
using the library. Note that even if it may be tempting to directly use the advanced demo tttrmode_in-
stant_processing you should not do this routinely. It creates very large files and throughput with inter-
preted Python is very poor.

Observe the mode input variable going into MH_Initialize. It makes a difference if you run T2 or
T3 mode. For instance, T2 mode will not allow you to work with high sync rates. For meaningful measure-
ments you will need to adjust the sync divider and the resolution (binning) dependent on your choice of mode.

The LabVIEW Demos

The LabVIEW demo VIs are provided in the src sub-folder inside the LabVIEW20xx folders. They can be run
either with 32 bit or 64 bit LabVIEW. The correct DLL (mhlib.dll for 32 bit, mhlib64.dll for 64 bit respectively) is
selected automatically, provided that it is located in the designated Windows folder (i.e. SysWOW64 and/or
System32). This should be the case after correct installation of the library package. The original demo code
was created with LabVIEW 2020, accordingly also a LabVIEW project file (MultiHarp.lvproj) and two execut-
ables (MultiHarpHisto.exe and MultiHarpT3.exe; both in build sub-folder) are provided for that version. For
backward compatibility the source code was also converted to LabVIEW 2010.

The first demo (1_SimpleDemo_MHHisto.vi) is very simple, demonstrating the basic usage and calling
sequence of the provided SubVIs encapsulating the DLL functionality, which are assembled inside the Lab-
VIEW library mhlib_x86_x64_UIThread.llb (in the folder _lib/PQ/MultiHarp). The demo starts by
calling some of these library functions to setup the hardware in a defined state and continues with a measure-
ment in histogramming mode by calling the corresponding library functions inside a while-loop. Histograms
and count rates for all available hardware channels are displayed on the front panel in a waveform graph (you
might have to select AutoScale for the axes) and numeric indicators, respectively. The measurement is
stopped if either the acquisition time has expired, if an error occurs (which is reported in the error out cluster),
if an overflow occurs or if the user hits the STOP button.

The second demo for histogramming mode (2_AdvancedDemo_MHHisto.vi) is a more sophisticated one
allowing the user to control all hardware settings “on the fly”, i.e. to change settings like acquisition time
(Acqu. ms), resolution (Resol. ms), offset (Offset ns in Histogram frame), number of histogram bins (Num
Bins), etc. before, after or while running a measurement. In contrast to the first demo settings for each avail-
able channel (including the Sync channel) can be changed individually (Settings button) and consecutive
measurements can be carried out without leaving the program (Run button; changes to Stop after pressing).
Additionally, measurements can be done either as “single shot” or in a continuous manner (Conti. Checkbox).
Various information are provided on the Front Panel like histograms and count rates for each available (and
enabled) channel as waveform graphs (you might have to select AutoScale for the axes), Sync rate,
readout rate, total counts and status information in the status bar, etc. In case an error occurs a popup win -
dow informs the user about that error and the program is stopped.

The program structure of this demo is based upon the National Instruments recommendation for queued
message and event handlers for single thread applications. Some comments inside the source code should
help the user to get an overview of the program and to facilitate the development of customized extensions.

Page 10

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

The third LabVIEW demo (3_AdvancedDemo_MHT3.vi) is the most advanced one and demonstrates the
usage of T3 mode including real-time evaluation of the collected TTTR records. The front panel resembles
the second demo but in addition to the histogram display a second waveform graph (you might have to select
AutoScale for the axes) also displays a time chart of the incoming photons for each available (and enabled)
channel with a time resolution depending on the Sync rate and the entry in the Resol. ms control inside the
Time Trace frame (which can be set in multiples of two). In contrast to the second demo there is no control
to set an overflow level or the number of histogram bins, which is fixed to 32.768 in T3 mode. Also in addition
to the acquisition time (called T3Acq. ms in this demo; set to 360.000.000 ms = 100 h by default) a second
time (Int.Time ms in Histogram frame) can be set which controls the integration time for accumulating a
histogram.

The program structure of this demo extends that of the second demo by extensive use of LabVIEW type-
definitions and two additional threads: a data processing thread (MH_DataProcThread.vi) and a visualiza-
tion thread. The communication between these threads is accomplished by LabVIEW queues. Thereby the
FiFo read function (case ReadFiFo in UIThread) can be called as fast as possible without any additional
latencies from data processing workload.

Some comments inside the source code should help the user to get an overview of the program and to facilit -
ate the development of customized extensions. Please note that due to performance reasons some of the
SubVIs inside MH_DataProcThread.vi have been inlined for performance, so that no debugging is pos-
sible on these SubVIs.

Program specific SubVIs and type-definitions used by the demos are organized in corresponding sub-folders
inside the demo folder (SubVIs, Types). General helper functions and type-definitions as well as DLL encap-
sulating libraries (*.llb) can be found in the _lib folder (containing further sub-folders) inside the demo folder.
In order to facilitate the convenient use of all DLL functions, additional VIs called
MH_AllDllFunctions_xxx.vi have been included. These VIs are not meant to be executed but should
only give a structured overview of all available DLL functions and their functional context.

Please note:

In addition to the library used by the demos (mhlib_x86_x64_UIThread.llb) a second library is included
allowing the DLL calls to be executed in any thread of LabVIEWs threading engine (mhlib_x86_x64_Any-
Thread.llb). This library is intended for time critical applications where user actions on the front panel (like
e.g., resizing or moving) must not affect the execution of a data acquisition thread containing these DLL func-
tions (please refer to “Multitasking in LabVIEW”: http://zone.ni.com/reference/en-XX/help/371361P-01/lvcon-
cepts/multitasking_in_labview/). When using this library you have to make sure that all DLL functions are
called in a sequential order to avoid errors or even program crashes. Also be aware that DLL functions in mh-
lib_x86_x64_AnyThread.llb have the same names as in mhlib_x86_x64_UIThread.llb and open-
ing both libraries at the same time would lead to name conflicts. Therefore, only experienced users should
use mhlib_x86_x64_AnyThread.llb.

The MATLAB Demos

The MATLAB demos are provided in the MATLAB folder. They are contained in .m files. You need to have a
MATLAB version that supports the loadlibrary and calllib commands. The earliest version we have
tested in this regard is MATLAB 7.3 but any version from 6.5 on should work. Note that recent versions of
MATLAB require a compiler to be installed for working with DLLs. We tested with MATLAB R2019a and
MinGW. For your specific version of MATLAB, please check the documentation of the MATLAB command
loadlibrary as to which compilers it supports. Be careful about the header file name specified in
loadlibrary. The names are case sensitive and spelling errors will lead to an apparently successful load -
but later no library calls will work.

The MATLAB demos are designed to run inside the MATLAB console. They need no command line input
parameters. They create output files in their current working directory. The output file will be ASCII in case of
the histogramming demo. In TTTR mode the output is stored in binary format for simplicity and performance
reasons. You can use any data visualization program to inspect the ASCII histograms. The binary files from
TTTR mode must be read by dedicated programs according to the format they were written in. The file read
demos for the regular MultiHarp TTTR data files (.PTU) can be used as a starting point. They cannot be used
directly on the binary demo output because they expect a file header the demos do not generate. This is in -
tentional in order to keep the MHLib demos focused on the key issues of using the library. The file demo code
can (with minor adaptions) in principle be used to process the TTTR records on the fly. However, MATLAB
scripts are relatively slow compared to properly compiled code. This may impose throughput limits. You might

Page 11

http://zone.ni.com/reference/en-XX/help/371361P-01/lvconcepts/multitasking_in_labview/
http://zone.ni.com/reference/en-XX/help/371361P-01/lvconcepts/multitasking_in_labview/

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

want to consider compiling Mex files instead. In this case please study the advanced demos tttrmode_in-
stant_processing (C, Python, Delphi, C#) which can be used as a starting point to learn this.

Observe the mode input variable going into MH_Initialize. It makes a difference if you run T2 or
T3 mode. For instance, T2 mode will not allow you to work with high sync rates. For meaningful measure-
ments you will need to adjust the sync divider and the resolution (binning) dependent on your choice of mode.

Page 12

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

5. Advanced Techniques

5.1. Using Multiple Devices
The library is designed to work with multiple MultiHarp devices (up to 8). Most of the demos use only the first
device found. In selected programming languages (C, C#) there is an advanced demo showing how to use
multiple devices in TTTR mode. If you wish to use some other demo with more than one MultiHarp you need
to modify the code accordingly. At the API level of MHLib the devices are distinguished by a device index
(0 .. 7). The device order corresponds to the order in which Windows enumerates the devices. If the devices
were plugged in or switched on sequentially when Windows was already up and running, the order is given
by that sequence. Otherwise it can be somewhat unpredictable. It may therefore be difficult to know which
physical device corresponds to the given device index. In order to solve this problem, the library routine
MH_OpenDevice provides a second argument through which you can retrieve the serial number of the phys-
ical device at the given device index. Similarly you can use MH_GetSerialNumber any time later on a
device you have successfully opened. The serial number of a physical MultiHarp device can be found at the
back of the housing. It is an 8 digit number starting with 010. The leading zero will not be shown in the serial
number strings retrieved through MH_OpenDevice or MH_GetSerialNumber.

As outlined above, if you have more than one MultiHarp and you want to use them together you need to
modify the demo code accordingly. This requires the following steps: Take a look at the demo code where the
loop for opening the device(s) is. In most of the demos all the available devices are opened. You may want to
extend this so that you

1. filter out devices with a specific serial number and

2. do not hold open devices you don't actually need.

The latter is recommended because a device you hold open cannot be used by other programs such as the
regular MultiHarp software.

By means of the device indices you picked out you can then extend the rest of the program so that every ac-
tion taken on the single device is also done on all devices of interest, i.e. initialization, setting of parameters,
starting a measurement etc. At the end the demos close all devices. It is recommended to keep this ap -
proach. It does no harm if you close a device that you haven't opened.

Note that combining multiple devices by software does not make a proper replacement for a hardware device
with more channels. This is due to multiple reasons. First, the clocks of the devices are not infinitely accurate
and may therefore drift apart. Second, the software-combined devices cannot start or stop measurements at
exactly the same time. Windows timing is not accurate enough and will cause unpredictable delays of some
milliseconds. Third, the data of the devices arrives in separate data streams and cannot easily be merged to-
gether. Even though the first and second issue can partially be solved by means of external clock signals or
White Rabbit, the approach is somewhat cumbersome.

5.2. Efficient Data Transfer
The TTTR modes are designed for fast real–time data acquisition. TTTR mode is most efficient in collecting
data with a maximum of information. It is therefore most likely to be used in sophisticated on–line data pro-
cessing scenarios, where it may be worth optimizing data throughput.

In order to achieve the highest throughput, the MultiHarp uses USB bulk transfers. This is supported by the
PC hardware that can transfer data to the host memory without much help of the CPU. For the MultiHarp this
permits data throughput as high as 9 Mcps (USB 2.0) or even up to 90 Mcps (USB 3.0) and leaves time for
the host to perform other useful things, such as on–line data analysis or storing data to disk.

In TTTR mode the data transfer process is exposed to the library user in a single function MH_ReadFiFo that
accepts a buffer address where the data is to be placed. The memory block size is fixed and must provide
space for 1,048,576 event records. However, the actual transfer size will depend on how much data was
available in the device’s FIFO buffer. The call will typically return after about 10 ms but possibly quicker if no
more data is available. The actual time to return can also be longer due to USB overhead and unpredictable
Windows latencies, especially when the PC or the USB connection is slow.

Page 13

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

As noted above, the transfer is implemented efficiently without excessive CPU use. Nevertheless, assuming
large block sizes, the transfer takes some time. Windows therefore gives the unused CPU time to other pro -
cesses or threads i.e. it waits for completion of the transfer without burning CPU time. This wait time is what
can also be used for doing ‘useful things’ in terms of any desired data processing or storing within your own
application. The proper way of doing this is to use multi–threading. In this case you design your program with
two threads, one for collecting the data (i.e. working with MH_ReadFiFo) and another for processing or stor-
ing the data. Multiprocessor systems can benefit from this technique even more. Of course you need to
provide an appropriate data queue between the two threads and the means of thread synchronization.
Thread priorities are another issue to be considered. Finally, if your program has a graphic user interface you
may need a third thread to respond to user actions reasonably fast. Again, this an advanced technique and it
cannot be demonstrated in all detail here. Currently only the most advanced LabVIEW demo uses this tech-
nique. Greatest care must be taken not to access the MHLib routines from different threads without strict con-
trol of mutual exclusion and maintaining the right sequence of function calls. However, the technique also al-
lows throughput improvements of 50% .. 100% and advanced programmers may want to use it. It might be in-
teresting to note that this is how TTTR mode is implemented in the regular MultiHarp software, where sus-
tained count rates over 9 Mcps (to disk) can be achieved with USB 2.0 and even up to 90 Mcps with USB 3.0.

When working with multiple devices, the overall USB throughput is usually limited by the host controller or
any hub the devices must share. You can increase overall throughput if you connect the individual devices to
separate host controllers without sharing hubs. If you install additional USB controller cards you should prefer
fast PCI–express models. However, modern mainboards often have multiple USB host controllers, so you
may not even need extra controller cards. In order to find out how many USB controllers you have and which
one the individual USB sockets belong to, you can use Microsoft's tool usbview.exe. In case of using mul-
tiple devices it is also beneficial for overall throughput if you use multi–threading in order to fetch and store
data from the individual devices in parallel. Again, re–entrance issues must be observed carefully in this
case, at least for all calls accessing the same device.

5.3. Instant TTTR Data Processing
As outlined earlier, collecting TTTR mode streams is time critical when data rates are high. This is why such
streams are often just written to disk and then only subsequently post-processed. Nevertheless there are cir-
cumstances where it is desirable to process the data instantly “on the fly” as it arrives. This may be for the
purpose of an instant preview or for data reduction. The advanced LabVIEW demo nicely demonstrates how
to obtain an instant preview. This requires interpreting and bitwise dissecting the TTTR data records as well
as correcting for overflows. In order to demonstrate this also for other programming languages there are ad-
vanced demos in the subfolders tttrmode_instant_processing (C, Python, Delphi, C#). These demos
do not write binary output but instead perform an instant processing and write the results out in ASCII. Please
note well that this is done purely for educational purposes. Instant processing and writing the results out in
ASCII is time consuming and dramatically reduces the achievable troughput. Furthermore, the resulting files
are many times larger than the original binary data. Any meaningful application derived from these demos
should therefore not write out individual data records but perform some sort of application specific data analy-
sis for preview and/or data reduction. Typical and meaningful examples are histogramming (see subfolders
t3rmode_instant_histogramming in C, Python, Delphi and C#) or intensity over time traces as shown
in the LabVIEW demo. Please note also that such real-time processing requires a suitable choice of program-
ming language. For instance, interpreted Python and Matlab scripts are many times slower than natively com-
piled code. Ultimate performance is obtained only with a proper compiled language such as C or Pascal. Fur-
thermore, true efficiency (and maximum throughput) can in such a scenario only be achieved by making use
of parallel processing on multiple CPUs. This requires programming with multiple threads. In this case you
should design your program with at least two threads, one for collecting the data (i.e. working with MH_Read-
FiFo) and another (or more) for processing, displaying, or storing the data (see also section 5.2). This is not
trivial and requires some programming experience.

If you need quick results and your throughput requirements are moderate you may still try and work with the
code from the demos in the subfolders tttrmode_instant_processing. For understanding the mecha-
nisms they are worth studying anyhow. Looking at the code you will see that after retrieving a block of TTTR
records via MH_ReadFiFo there is a loop over that block with code to dissect each individual record. Depen-
dent on what kind of record it is, there will be different actions taken. A “special record” carries information on
overflows and markers while a regular event record carries photon timing data. While overflows will typically
not be of further interest (except correcting for them as shown) the pieces of interest are markers and pho -
tons. When they occur you notice the calls into the subroutines GotMarker and GotPhoton (with variants for
T2 and T3 mode). These are the points where you may want to accommodate you application specific code

Page 14

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

for whatever you may want to do with a photon or a marker. In your derived code you may soon want to throw
out the ASCII output for each an every record. It is only there for demonstration purposes.

5.4. Working with Warnings
The library provides routines for obtaining and interpreting warnings about critical measurement conditions.
The mechanism and warning criteria are the same as those used in the regular MultiHarp software. In order
to obtain and use these warnings also in your custom software you may want to use the library routine
MH_GetWarnings. This may help inexperienced users to notice possible mistakes before stating a measure-
ment or even during the measurement.

It is important to note that the generation of warnings is dependent on the current count rates and the current
measurement settings. It was decided that MH_GetWarnings does not obtain the count rates on its own, be-
cause the corresponding calls take some time and might waste USB bandwidth and processing time. It is
therefore necessary that the library routines for count rate retrieval (on all channels) have been called before
MH_GetWarnings is called. Since most interactive measurement software periodically retrieves the rates
anyhow, this is not a serious complication. Note that there are library calls for retrieval of individual count
rates (MH_GetSyncRate and MH_GetCountRate) but in case of performance critical applications it is more
efficient to use MH_GetAllCountRates retrieving all rates in one call.

The routine MH_GetWarnings delivers the cumulated warnings in the form of a bit field. In order to translate
this into readable information you can use MH_GetWarningsText. Before passing the bit field into MH_Get-
WarningsText you can mask out individual warnings by means of the bit masks defined in mhdefin.h.
See the appendix for a description of the individual warnings.

5.5. Hardware Triggered Measurements
This measurement scheme allows to start and stop the acquisition by means of external TTL signals rather
than software comands. Since it is an advanced real-time technique, beginners are advised to not try their
first steps with it. For the same reason, demos exist only in C.

Before using this scheme, consider when it is useful to do so. For instance, it may be tempting to use the
hardware triggering to implement very short histogramming durations. However, remember that TTTR mode
is usually the most efficient way of retrieving the maximum information on photon dynamics. By means of
marker inputs the photon events can be precisely assigned to complex external event scenarios.

The MultiHarp's data acquisition can be controlled in various ways. Default is the internal CTC (counter timer
circuit). In that case the measurement will take the duration set by the tacq parameter passed to
MH_StartMeas. The other way of controlling the histogram boundaries (in time) is by external TTL signals
fed to the control connector pins C1 and C2 (see appendix section Connectors of the MultiHarp manual). In
that case it is possible to have the acquisition started and stopped when specific signals occur. It is also pos-
sible to combine external starting with stopping through the internal CTC. The exact behaviour of this scheme
is controlled by the parameters supplied to the call of MH_SetMeasControl. Dependent on the parameter
meascontrol the following modes of operation can be obtained:

Symbolic Name Value Function

MEASCTRL_SINGLESHOT_CTC 0 Default value. Acquisition starts by software
command and runs until CTC expires. The duration
is set by the tacq parameter passed to
MH_StartMeas.

MEASCTRL_C1_GATE 1 Data is collected for the period where C1 is active.
This can be the logical high or low period dependent
on the value supplied to the parameter
startedge.

Page 15

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

MEASCTRL_C1_START_CTC_STOP 2 Data collection is started by a transition on C1 and
stopped by expiration of the internal CTC. Which
transition actually triggers the start is given by the
value supplied to the parameter startedge.
The duration is set by the tacq parameter passed
to MH_StartMeas.

MEASCTRL_C1_START_C2_STOP 3 Data collection is started by a transition on C1 and
stopped by by a transition on C2. Which transitions
actually trigger start and stop is given by the values
supplied to the parameters startedge and
stopedge.

The symbolic constants shown above are defined in mhdefin.h. There are also symbolic constants for the
parameters controlling the active edges (rising/falling).

Please study the demo code for external hardware triggering and observe the polling loops required to detect
the beginning and end of a measurement. Be aware that the speed of you computer and the delays intro -
duced by the operating system's task switching impose some limits on how fast you can run this scheme.

5.6. Working with the External FPGA Interface
The external FPGA interface (EFI) is a novel feature exclusive to the MultiHarp 160. It permits retrieving
TTTR mode data at substantially higher bandwidth than via USB. Furthermore, since the data is streamed di-
rectly to an FPGA, it permits custom data processing in real-time, way beyond the capabilities of a PC in
terms of speed and latency. In order to enable and use this feature from the software side there are a set of
dedicated library routines. They are listed in section 7.2 for completeness. However, since using the EFI is an
advanced topic in its own, also involving a large amount of FPGA programming details, there is a separate
manual for this. It is provided on the distribution media as part of the EFI gateware and software pack (cur -
rently EFI_v01_00_00.zip). The most recent EFI pack can be downloaded form the MultiHarp 160 product
page at https://www.picoquant.com/products/category/tcspc-and-time-tagging-modules/multiharp-160.

5.7. Working with Event Filtering
Filtering TTTR data streams in hardware is a novel feature available from MHLib v. 3.1.0.0. This helps to re-
duce USB bus load in TTTR mode by eliminating photon events that carry no information of interest as typic-
ally found in many coincidence correlation experiments. Please read the MultiHarp manual for more details.

Note that this new feature requires suitable gateware. Devices shipped after April 2022 will have this readily
installed. For older devices you can request an update. Please note that the budget models MultiHarp 150 N
cannot be upgraded for this feature. Availability of the feature can be probed with MH_GetFeatures, the bit
FEATURE_EVNT_FILT will be 1 if it is available.

There are two types of event filters. The Row Filters are implemented in the local FPGA processing a row of
input channels. Each Row Filter can act only on the input channels within its own row and never on the sync
channel. The Main Filter is implemented in the main FPGA processing the aggregated events arriving from
the row FPGAs. The Main Filter can therefore act on all channels of the MutiHarp device including the sync
channel. Since the Raw Filters and Main Filter form a daisychain, the overall filtering result depends on their
combined action. Both filters are by default disabled upon device initialization and can be independently en-
abled when needed.

Both filters follow the same concept but with independently programmable parameters. The parameter
timerange determines the time window the filter is acting on. The parameter matchcnt specifies how
many other events must fall into the chosen time window for the filter condition to act on the event at hand.
The parameter inverse inverts the filter action, i.e. when the filter would regularly have eliminated an event
it will then keep it and vice versa. For the typical case, let it be not inverted. Then, if matchcnt is 1 we will
obtain a simple ‘singles filter’. This is the most straight forward and most useful filter in typical quantum optics
experiments. It will suppress all events that do not have at least one coincident event within the chosen time
range, be this in the same or any other channel.

Page 16

https://www.picoquant.com/products/category/tcspc-and-time-tagging-modules/multiharp-160

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

In addition to the filter parameters explained so far it is possible to mark individual channels for use. Used
channels will take part in the filtering process. Unused channels will be suppressed altogether. Furthermore, it
is possible to indicate if a channel is to be passed through the filter unconditionally, whether it is marked as
‘use’ or not. The events on a channel that is marked neither as ‘use’ nor as ‘pass’ will not pass the filter, pro-
vided the filter is enabled.

As outlined earlier, the Raw Filters and Main Filter form a daisychain and the overall filtering result depends
on their combined action. It is usually sufficient and easier to use the Main Filter alone. The only reasons for
using the Row Filter(s) are early data reduction, so as to not overload the Main Filter, and the possible need
for more complex filters, e.g. with different time ranges.

Page 17

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

6. Problems, Tips & Tricks

6.1. PC Performance Requirements
Performance requirements for the DLL are the same as with the standard MultiHarp software. The MultiHarp
device and its software interface are a complex real–time measurement system demanding appropriate per-
formance both from the host PC and the operating system. This is why a fairly modern CPU and sufficient
memory are required. At least a dual core, 2 GHz processor, 4 GB of memory and a fast hard disk (preferably
SSD) are recommended. However, as long as you do not use TTTR mode, these issues should not be of
severe impact.

6.2. USB Interface
In order to deliver maximum throughput, the MultiHarp uses state–of–the–art USB bulk transfers. This is why
the MultiHarp must rely on having a USB host interface matched to the device speed. USB host controllers of
modern PCs are usually integrated on the mainboard. For older PCs they may be upgraded as plug-in cards.
Throughput is then usually limited by the host controller and operating system, not the MultiHarp. Do not run
other bandwidth demanding devices on the same USB interface when working with the MultiHarp. USB
cables must be qualified for the USB speed you are using. Old and cheap cables often do not meed this re-
quirement and can lead to errors and malfunction. Similarly, many PCs have poor internal USB cabling, so
that USB sockets at the front of the PC are often unreliable. Obscure USB errors may also result from worn
out plugs and sockets or subtle damages to USB cables, caused, e.g., by sharply bending or crushing them.

6.3. Troubleshooting
Troubleshooting should begin by testing your hardware and driver setup. This is best accomplished by the
standard MultiHarp software for Windows (supplied by PicoQuant). Only if this software is working properly
you should start working with the DLL. If there are problems even with the standard software, please consult
the MultiHarp manual for detailed troubleshooting advice.

The DLL will access the MultiHarp device through a dedicated device driver. You need to make sure the
device driver has been installed correctly. The driver is installed by the setup program using standard Win-
dows Plug&Play mechanisms. In addition both the standard MultiHarp software distribution as well as the
MHLib distribution media contain the driver in the subfolder \Driver. You can use the Windows
Device Manager to check if the board has been detected and the driver is installed. On some Windows ver-
sions you may need administrator rights to perform hardware setup tasks. Please consult the MultiHarp
manual for hardware related problem solutions.

The next step, if hardware and driver are working, is to make sure you have the right DLL version installed. It
comes with its own setup program that must be executed as Administrator. In the Windows Explorer you can
also right click MHLib64.DLL and MHLib.DLL (in \Windows\System32 or \Windows\SysWOW64) and
check the version number (under Properties).

To get started, ensure that your setup is working by running the regular MultiHarp software. After closing the
regular MultiHarp software, try the readily compiled demos supplied with the DLL. For first tests take one of
the standard histogramming demos. If this is working, your own programs should work as well. Note that the
hard coded settings may not be compatible with your experimental setup. Then the pre–compiled demos may
not work as expected. Only the advanced LabVIEW demos allow to enter most of the settings interactively.

Page 18

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

6.4. Access permissions
On some Windows versions you may need administrator rights to perform the DLL setup. If the setup is per-
formed by an administrator but used from other accounts without full access permission to all disk locations,
these restricted accounts may no be able to run the demos in the default locations they have been installed
to. In such cases it is recommended that you copy the demo directory or selected files from it to a dedicated
development directory in which you have the necessary rights. Otherwise the administrator must give full ac-
cess to the demo directory. On some Windows versions it is possible to switch between user accounts
without shutting down the running applications. It is not possible to start a MultiHarp program if any other pro-
gram accessing the device is running in another user account that has been switched away. Doing so may
cause crashes or loss of data.

6.5. Version tracking
While PicoQuant will always try to maintain a maximum of continuity in further hardware and software devel-
opment, changes for the benefit of technical progress cannot always be avoided. It may therefore happen,
that data structures, calling conventions or program flow will change. In order to design programs that will re -
cognize such changes with a minimum of trouble we strongly recommend that you make use of the functions
provided for version retrieval of hardware and DLL. In any case your software should issue a warning if it de-
tects versions other than those it was tested with.

6.6. Software Updates
We constantly improve and update the software for our instruments. This includes updates of the configur-
able hardware (FPGA). Such updates are important as they may affect reliability and interoperability with
other products. The software updates are free of charge, unless major new functionality is added. It is
strongly recommended that you check for software updates before investing time into a larger programming
effort.

6.7. Bug Reports and Support
The MultiHarp TCSPC system has gone through extensive testing. It builds on over 20 years of experience
with several predecessor models and the feedback of hundreds of users. Nevertheless, it is a fairly new
product and some bugs may still be found. In any case we would like to offer you our support if you experi -
ence problems with the system. Do not hesitate to contact PicoQuant in case of difficulties with your Multi-
Harp.

If you should observe errors or bugs caused by the MultiHarp system please try to find a reproducible error
situation. Then email a detailed description of the problem and all relevant circumstances, especially the ver-
sions of the software you were using, the version of Windows, and ideally also a summary of other add-on
hardware installed in your PC, to support@picoquant.com. Alternatively you can also use our support page at
www.picoquant.com/contact/support. Please run msinfo32 to obtain a listing of your PC configuration and
attach the summary file to your error report. Your feedback will help us to improve the product and document-
ation.

Of course we also appreciate good news: If you have obtained exciting results with one of our instruments,
please let us know, and where appropriate, please mention the instrument in your publications. For the Multi -
Harp you can do so very easily by citing our reference publication:

Wahl M., Roehlicke T., Kulisch S., Rohilla S., Kraemer B., Hocke A.C.:
Photon arrival time tagging with many channels, sub-nanosecond deadtime, very high throughput,
and fiber optic remote synchronization. Review of Scientific Instruments, 91, 013108 (2020)
(preprint also available on ArXiv: https://arxiv.org/abs/2001.02424)

At our Website we also maintain a large bibliography of publications referring to our instruments. It may serve
as a reference for you and other potential users. See http://www.picoquant.com/scientific/references. Please
submit your publications for addition to this list.

Page 19

http://www.picoquant.com/scientific/references
https://arxiv.org/abs/2001.02424
http://www.picoquant.com/contact/support
mailto://support@picoquant.com

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

7. Appendix

7.1. Data Types
The MultiHarp programming library MHLib.DLL is written in C and its data types correspond to C / C++ data
types with bit-widths as follows:

char 8 bit, byte (or characters in ASCII)

short int 16 bit signed integer

unsigned short int 16 bit unsigned integer

int
long int

32 bit signed integer

unsigned int
unsigned long int

32 bit unsigned integer

__int64
long long int

 64 bit signed integer

unsigned int64
unsigned long long int

 64 bit unsigned integer

float 32 bit floating point number

double 64 bit floating point number

Note that the format for the decimal point may depend on your Windows settings at run–time of the MultiHarp
software (usually national language dependent).

Note also that on platforms other than the Intel architecture byte swapping may occur when the MultiHarp
data files are read there for further processing. We recommend using the native Intel architecture environ-
ment consistently.

The distribution pack includes a set of demo programs (source code) for various programming languages to
show how access to MultiHarp data files can be implemented. These demos also show how to process TTTR
records and the related code fragments can be used for real-time processing of freshly collected data as well.
They will be installed in the subfolder \Filedemo under the chosen installation folder.

7.2. Functions Exported by MHLib.DLL
See mhdefin.h for predefined constants given in capital letters here. Return values < 0 denote errors.
See errorcodes.h for the error codes. On 32-bit platforms all functions must be called with _stdcall
convention. On 64-bit platforms this defaults to the Microsoft x64 calling convention. Note that MHLib is a
multi-device library with the capability to control more than one MultiHarp simultaneously. For that reason all
device specific functions (i.e. the functions from section 7.2.2 on) take a device index as first argument. Note
that functions taking a channel number as an argument expect the channels enumerated 0..N-1 while the in-
teractive MultiHarp software as well as the physical front panel enumerates the channels 1..N. This is due to
internal data structures and for consistency with earlier products.

Page 20

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

7.2.1. General Functions
These functions work independent from any device.

int MH_GetLibraryVersion (char* vers);

arguments: vers: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

Note: Use this call to ensure compatibility of the library with your own application.

int MH_GetErrorString (char* errstring, int errcode);

arguments: errstring: pointer to a buffer for at least 40 characters
errcode: error code returned from a MH_xxx function call

return value: =0 success
<0 error

Note: This function is provided to obtain readable error strings that explain the cause of the error better than the numerical error
code. Use these in error handling message boxes, support enquiries etc.

7.2.2. Device Related Functions
All functions below are device related and require a device index.

int MH_OpenDevice (int devidx, char* serial);

arguments: devidx: device index 0..7
serial: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

Note: Once a device is opened by your software it will not be available for use by other programs until you close it.

int MH_CloseDevice (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: Closes and releases the device for use by other programs.

int MH_Initialize (int devidx, int mode, int refsource);

arguments: devidx: device index 0..7
mode: measurement mode

0 = histogramming mode
2 = T2 mode
3 = T3 mode

refsource: reference clock to use
0 = use internal clock
1 = use 10 MHz external clock
2 = White Rabbit master with generic partner
3 = White Rabbit slave with generic partner
4 = White Rabbit grand master with generic partner
5 = use 10 MHz + PPS from GPS receiver

Page 21

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

6 = use 10 MHz + PPS + time via UART from GPS receiver
7 = White Rabbit master with MultiHarp as partner
8 = White Rabbit slave with MultiHarp as partner
9 = White Rabbit grand master with MultiHarp as partner

return value: =0 success
<0 error

Note: This routine must be called before any of the other routines below can be used. Note that some of them depend on the
measurement mode you select here. See the MultiHarp manual for more information on the measurement modes, external
clock, and White Rabbit (WR). Note that selecting WR as a clock source requires that a WR connection has actually been
established beforehand. Unless the WR connection is established by a WR startup script this will require a two stage pro -
cess initially initializing with internal clock source, then settung up the WR connection by means of the WR routines de-
scribed below, then initializing again with the desired WR clock mode.

7.2.3. Functions for Use on Initialized Devices
All functions below can only be used after MH_Initialize was successfully called.

int MH_GetHardwareInfo (int devidx, char* model, char* partno, char* version);

arguments: devidx: device index 0..7
model: pointer to a buffer for at least 24 characters
partno: pointer to a buffer for at least 8 characters
version: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int MH_GetFeatures (int devidx, int* features);

arguments: devidx: device index 0..7
features: pointer to a buffer for an integer (actually a bit pattern)

return value: =0 success
<0 error

Note: You do not really need this function. It is mainly for integration in PicoQuant system software such as SymPhoTime in order
to figure out in a standardized way what capabilities the device has. If you want it anyway, use the bit masks from mhdefin.h
to evaluate individual bits in the pattern.

int MH_GetSerialNumber (int devidx, char* serial);

arguments: devidx: device index 0..7
serial: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int MH_GetBaseResolution (int devidx, double* resolution, int* binsteps);

arguments: devidx: device index 0..7
resolution: pointer to a double precision float (64 bit)

returns the base resolution in ps
binsteps: pointer to an integer,

returns the number of allowed binning steps

return value: =0 success
<0 error

Note: The base resolution of a device is its best possible resolution as determinded by the hardware. It also corresponds to the
timing resolution in T2 mode. In T3 and Histogramming mode it is possible to “bin down” the resolution (see MH_SetBinning)
The value returned in binsteps is the number of permitted binning steps. The range of values you can pass to MH_Set-
Binning is then 0..binsteps-1.

Page 22

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

int MH_GetNumOfInputChannels (int devidx, int* nchannels);

arguments: devidx: device index 0..7
nchannels: pointer to an integer,

returns the number of installed input channels

return value: =0 success
<0 error

Note: The value returned in nchannels is the number of channels. The range of values you can pass to the library calls accept-
ing a channel number is then 0..nchannels-1.

int MH_GetNumOfModules (int devidx, int* nummod);

arguments: devidx: device index 0..7
nummod: pointer to an integer,

returns the number of installed modules

return value: =0 success
<0 error

Note: This routine is only an accessory for retrieval of hardware version details via MH_GetModuleInfo which must be called
separately for each module. The value returned in nummod is the number of modules. The range of values you can pass to
MH_GetModuleInfo is then 0..nummod-1.

int MH_GetModuleInfo (int devidx, int modidx, int* modelcode, int* versioncode);

arguments: devidx: device index 0..7
modidx: module index 0..nummod-1 (see MH_GetNumOfModules)
modelcode: pointer to an integer,

returns the model of the module identified by modidx
versioncode: pointer to an integer,

 returns the versioncode of the module identified by modidx

return value: =0 success
<0 error

Note: This routine is for retrieval of hardware version details and must be called separately for each module. Get the number of
modules via MH_GetNumOfModules. You only need this information for support enquiries.

int MH_GetDebugInfo(int devidx, char *debuginfo);

arguments: devidx: device index 0..7
debuginfo: pointer to a buffer for at least 65536 characters

return value: =0 success
<0 error

Note: Use this call to obtain debug information. Call it immediately after receiving an error code <0 from any library call or after de-
tecting a FLAG_SYSERROR from MH_GetFlags. In case of FLAG_SYSERRORr please provide this information for support.

int MH_SetSyncDiv (int devidx, int div);

arguments: devidx: device index 0..7
div: sync rate divider

(1, 2, 4, .., SYNCDIVMAX)

return value: =0 success
<0 error

Note: The sync divider must be used to keep the effective sync rate at values < 78 MHz. It should only be used with sync sources
of stable period. Using a larger divider than strictly necessary does not do great harm but it may result in slightly larger tim-
ing jitter. The readings obtained with MH_GetCountRate are internally corrected for the divider setting and deliver the ex-
ternal (undivided) rate. The sync divider should not be changed while a measurement is running.

Page 23

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

int MH_SetSyncEdgeTrg(int devidx, int level, int edge);

arguments: devidx: device index 0..7
level: trigger level in mV TRGLVLMIN..TRGLVLMAX
mac_edge: 0 = falling, 1 = rising

return value: =0 success
<0 error

Note: The hardware uses a 10 bit DAC that can resolve the level value only in steps of about 2.34 mV.

int MH_SetSyncChannelOffset (int devidx, int value);

arguments: devidx: device index 0..7
value: sync timing offset in ps

minimum = CHANOFFSMIN
maximum = CHANOFFSMAX

return value: =0 success
<0 error

Note: This is equivalent to changing the cable delay on the sync input. Actual resolution is the device’s base resolution.

int MH_SetSyncChannelEnable (int devidx, int enable); //new since v3.1

arguments: devidx: device index 0..7
enable: desired enable state of the sync channel

0 = disabled
1 = enabled

return value: =0 success
<0 error

Note: This is really only useful in T2 mode. Histogramming and T3 mode need an active sync signal.

int MH_SetSyncDeadTime (int devidx, int on, int deadtime); //new since v1.1

arguments: devidx: device index 0..7
on: 0 = set minimal dead-time, 1 = activate extended dead-time
deadtime: extended dead-time in ps

minimum = EXTDEADMIN
maximum = EXTDEADMAX

return value: =0 success
<0 error

Note: This call is primarily intended for the suppression of afterpulsing artefacts of some detectors. The corresponding hardware
functionality is regularly available in devices manufactured after September 2019. Earlier devices need a firmware upgrade
to provide this feature. You can use MH_GetFeatures or evaluate the return code of MH_SetSyncDeadTime to determine if
the feature is available. An extended dead-time does not prevent the TDC from measuring the next event and hence enter a
new dead-time. It only suppresses events occuring within the extended dead-time from further processing. Note that when
an extended dead-time is set then it will also affect the count rate meter readings. Also note that the actual extended dead-
time is only approximated to the nearest step of the device’s base resolution.

int MH_SetInputEdgeTrg(int devidx, int channel, int level, int edge);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1
level: trigger level in mV TRGLVLMIN..TRGLVLMAX
mac_edge: 0 = falling, 1 = rising

return value: =0 success
<0 error

Note: The maximum input channel index must correspond to nchannels-1 as obtained through MH_GetNumOfInputChannels().
The hardware uses a 10 bit DAC that can resolve the level value only in steps of about 2.34 mV.

Page 24

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

int MH_SetInputChannelOffset (int devidx, int channel, int value);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1
value: channel timing offset in ps

minimum = CHANOFFSMIN
maximum = CHANOFFSMAX

return value: =0 success
<0 error

Note: This is equivalent to changing the cable delay on the chosen input. Actual offset resolution is the device’s base resolution.
The maximum input channel index must correspond to nchannels-1 as obtained through MH_GetNumOfInputChannels().

int MH_SetInputChannelEnable (int devidx, int channel, int enable);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1
enable: desired enable state of the input channel

0 = disabled
1 = enabled

return value: =0 success
<0 error

Note: The maximum channel index must correspond to nchannels-1 as obtained through MH_GetNumOfInputChannels().

int MH_SetInputDeadTime (int devidx, int channel, int on, int deadtime); //new since v1.1

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1
on: 0 = set minimal dead-time, 1 = activate extended dead-time
deadtime: extended dead-time in ps

minimum = EXTDEADMIN
maximum = EXTDEADMAX

return value: =0 success
<0 error

Note: This call is primarily intended for the suppression of afterpulsing artefacts of some detectors. The corresponding hardware
functionality is regularly available in devices manufactured after September 2019. Earlier devices need a firmware upgrade
to provide this feature. You can use MH_GetFeatures or evaluate the return code of MH_SetSyncDeadTime to determine if
the feature is available. An extended dead-time does not prevent the TDC from measuring the next event and hence enter a
new dead-time. It only suppresses events occuring within the extended dead-time from further processing. When an exten-
ded dead-time is set for a channel then it will also affect the corresponding count rate meter readings. Also note that the ac-
tual extended dead-time is only approximated to the nearest step of the device’s base resolution.

int MH_SetInputHysteresis (int devidx, int hystcode); //new since v3.0

arguments: devidx: device index 0..7
deadtime: code for the hysteresis

0 = 3mV approx. (default)
1 = 35mV approx.

return value: =0 success
<0 error

Note: This call is intended for the suppression of noise or pulse shape artefacts of some detectors by setting a higher input hyster -
esis. The corresponding functionality is regularly available in devices manufactured after March 2021. Earlier devices will
need a firmware upgrade to provide this feature. You can use the library call MH_GetFeatures or evaluate the return code of
MH_SetInputHysteresis to determine if the feature is available. Note that this setting affects all timing inputs (sync and chan-
nels) simultaneously.

Page 25

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

int MH_SetStopOverflow (int devidx, int stop_ovfl, unsigned int stopcount);

arguments: devidx: device index 0..7
stop_ofl: 0 = do not stop,

1 = do stop on overflow
stopcount: count level at which should be stopped

minimum = STOPCNTMIN
maximum = STOPCNTMAX

return value: =0 success
<0 error

Note: This setting determines if a measurement run will stop if any channel reaches the maximum set by stopcount. If
stop_ofl is 0 the measurement will continue but counts above STOPCNTMAX in any bin will be clipped.

int MH_SetBinning (int devidx, int binning);

arguments: devidx: device index 0..7
binning: measurement binning code

minimum = 0 (smallest, i.e. base resolution)
maximum = (MAXBINSTEPS-1) (largest)

return value: =0 success
<0 error

Note: Binning only applies in Histogramming and T3 Mode. The binning code corresponds to repeated doubling, i.e.

0 = 1x base resolution,
1 = 2x base resolution,
2 = 4x base resolution,
3 = 8x base resolution, and so on.

int MH_SetOffset (int devidx, int offset);

arguments: devidx: device index 0..7
offset: histogram time offset in ns

minimum = OFFSETMIN
maximum = OFFSETMAX

return value: =0 success
<0 error

Note: This offset only applies in histogramming and T3 mode. It affects only the difference between stop and start before it is put
into the T3 record or is used to increment the corresponding histogram bin. It is intended for situations where the range of
the histogram is not long enough to look at “late” data. By means of the offset the “window of view” is shifted to a later range.
This is not the same as changing or compensating cable delays. If the latter is desired please use MH_SetSyncChannelOff-
set and/or MH_SetInputChannelOffset.

int MH_SetHistoLen (int devidx, int lencode, int* actuallen);

arguments: devidx: device index 0..7
lencode: histogram length code

minimum = 0
maximum = MAXLENCODE (default)

actuallen: pointer to an integer,
returns the current length (time bin count) of histograms
calculates as 1024 times lencode to the power of 2

return value: =0 success
<0 error

Note: This sets the number of bins of the collected histograms. The histogram length obtained with MAXLENCODE is 65536
which is also the default after initialization if MH_SetHistoLen is not called.

Page 26

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

int MH_ClearHistMem (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: This clears the histogram memory of all channels. Only meaningful in histogramming mode.

int MH_SetMeasControl (int devidx, int meascontrol, int startedge, int stopedge);

arguments: devidx: device index 0..7
meascontrol: measurement control code

0 = MEASCTRL_SINGLESHOT_CTC
1 = MEASCTRL_C1_GATED
2 = MEASCTRL_C1_START_CTC_STOP
3 = MEASCTRL_C1_START_C2_STOP
4 = MEASCTRL_WR_M2S
5 = MEASCTRL_WR_S2M
6 = MEASCTRL_SW_START_SW_STOP // new since v3.1

startedge: edge selection code
0 = falling
1 = rising

stopedge: edge selection code
0 = falling
1 = rising

return value: =0 success
<0 error

Note: This sets the measurement control mode and must be called before starting a measurement. The default after initialization
(if this function is not called) is 0, i.e. CTC controlled acquisition time. The modes 1..5 allow hardware triggered measure-
ments through TTL signals at the control port or through White Rabbit. Note that this needs custom software. For a guideline
please see the demo set for the C language. MEASCTRL_SW_START_SW_STOP permits controlling the duration of
meaurements purely by software and thereby overcoming the limit of 100h imposed by the hardware CTC. Note that in this
case the results of MH_GetElapsedMeasTime will be less accurate.

int MH_SetTriggerOutput(int devidx, int period);

arguments: devidx: device index 0..7
period: in units of 100ns, TRIGOUTMIN..TRIGOUTMAX, 0 = off

return value: =0 success
<0 error

Note: This can be used to set the period of the programmable trigger output. The period 0 switches it off. Observe laser safety
when using this feature for triggering a laser.

int MH_StartMeas (int devidx, int tacq);

arguments: devidx: device index 0..7
tacq: acquisition time in milliseconds

minimum = ACQTMIN
maximum = ACQTMAX

return value: =0 success
<0 error

Note: If beforehand MEASCTRL_SW_START_SW_STOP is set via MH_SetMeasControl, the parameter tacq will be ignored and
the measurement will run until MH_StopMeas is called. This can be used to overcome the limit of 100 h imposed by the
hardware CTC. However, the results of MH_GetElapsedMeasTime will in this case be less accurate as it can only use the
timers of the operating system.

Page 27

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

int MH_StopMeas (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: This call can be used to force a stop before the acquisition time expires. For clean-up purposes must in any case be called
after a measurement, also if the measurement has expired on its own.

int MH_CTCStatus (int devidx, int* ctcstatus);

arguments: devidx: device index 0..7
ctcstatus pointer to an integer,

returns the acquisition time state
0 = acquisition time still running
1 = acquisition time has ended

return value: =0 success
<0 error

Note: This call can be used to check if a measurement has expired or is still running.

int MH_GetHistogram (int devidx, unsigned int *chcount, int channel);

arguments: devidx: device index 0..7
chcount pointer to an array of at least actuallen dwords (32bit)

where the histogram data can be stored
channel: input channel index 0..nchannels-1

return value: =0 success
<0 error

Note: The histogram buffer size must correspond to the value obtained through MH_SetHistoLen().
The maximum input channel index must correspond to nchannels-1 as obtained through MH_GetNumOfInputChannels().
Note that MH_GetHistogram cannot be used with the shortest two histogram lengths of 1024 and 2048 bins. You need to
use MH_GetAllHistograms in this case.

int MH_GetAllHistograms(int devidx, unsigned int *chcount);

arguments: devidx: device index 0..7
chcount: buffer for a multidimensional array of the form

 unsigned int histograms[num_channels][histolen]

return value: =0 success
<0 error

Note: This can be used as a replacement for multiple calls to MH_GetHistogram when all histograms are to be retrieved in the
most time-efficient way. The multidimensional array receiving the data must be shaped according to the number of input
channels of the device and the chosen histogram length. Written in C notation this would be something like
unsigned int histobuf[numinputchannels][numhistogrambins].

int MH_GetResolution (int devidx, double* resolution);

arguments: devidx: device index 0..7
resolution: pointer to a double precision float (64 bit)

returns the resolution at the current binning
(histogram bin width) in ps

return value: =0 success
<0 error

Note: This is not meaningful in T2 mode.

Page 28

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

int MH_GetSyncRate (int devidx, int* syncrate);

arguments: devidx: device index 0..7
syncrate: pointer to an integer

returns the current sync rate

return value: =0 success
<0 error

Note: Allow at least 100 ms after MH_Initialize or MH_SetSyncDivider to get a stable rate meter reading.
Similarly, wait at least 100 ms to get a new reading. This is the gate time of the counter.

int MH_GetCountRate (int devidx, int channel, int* cntrate);

arguments: devidx: device index 0..7
channel: number of the input channel 0..nchannels-1
cntrate: pointer to an integer

returns the current count rate of this input channel

return value: =0 success
<0 error

Note: Allow at least 100 ms after MH_Initialize to get a stable rate meter reading.
Similarly, wait at least 100 ms to get a new reading. This is the gate time of the counters.
The maximum input channel index must correspond to nchannels-1 as obtained through MH_GetNumOfInputChannels().

int MH_GetAllCountRates(int devidx, int* syncrate, int* cntrates);

arguments: devidx: device index 0..7
syncrate: pointer to an integer variable receiving the sync rate
cntrates: pointer to an array of integer variables of the form

 int cntrates[num_channels] receiving the input rates

return value: =0 success
<0 error

Note: This can be used as replacement of MH_GetSyncRate and MH_GetCountRate when all rates need to be retrieved in an
efficient manner. Make sure that the array cntrates is large enough for the number of input channels your device has. The
safest approach is to dimension it for MAXINPCHAN, i.e. 64 channels.

int MH_GetFlags (int devidx, int* flags);

arguments: devidx: device index 0..7
flags: pointer to an integer

returns current status flags (a bit pattern)

return value: =0 success
<0 error

Note: Use the predefined bit mask values in mhdefin.h (e.g. FLAG_OVERFLOW) to extract individual bits through a bitwise AND.

int MH_GetElapsedMeasTime (int devidx, double* elapsed);

arguments: devidx: device index 0..7
elapsed: pointer to a double precision float (64 bit)

returns the elapsed measurement time in ms

return value: =0 success
<0 error

Note: This can be used to obtain the elapsed measurement time of a measurement. This relates to the current measurement when
still running or to the previous measurement when already finished. Note that when MEASCTRL_SW_START_SW_STOP is
used (controlling the duration of meaurements purely by software) the results of MH_GetElapsedMeasTime will be less ac-
curate.

Page 29

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

int MH_GetStartTime(int devidx, unsigned int* timedw2, unsigned int* timedw1,
 unsigned int* timedw0);

arguments: devidx: device index 0..7
timedw2: most significant dword of the time value
timedw1: 2nd m.s. dword of the time value
timedw0: least significant dword of the time value

return value: =0 success
<0 error

Note: This can be used to retrieve the start time of a measurement with picosecond resolution. It relates always to the start of the
most recent measurement, be it completed or only just started. The result is to be interpreted in the sense of a unix time, i.e.
elapsed picoseconds since January 1st 1970 00:00:00 UTC (Universal Time). Note that the actual resolution is the device’s
base resolution. Actual accuracy depends on the chosen time base, e.g., a White Rabbit grandmaster can be very accurate.
With less accurate clocks the high resolution result can still be meaningful in a relative sense, e.g. between two devices syn -
chronized over White Rabbit. With internal clocking the accuracy only reflects that of the PC clock. The retrieval via 3
dwords is due to the limited range of all other standard number formats.

int MH_GetWarnings (int devidx, int* warnings);

arguments: devidx: device index 0..7
warnings pointer to an integer

returns warnings, bitwise encoded (see mhdefin.h)

return value: =0 success
<0 error

Note: Prior to this call you must call either MH_GetAllCountRates or call MH_GetSyncRate and MH_GetCoutRate for all
channels. Otherwise the received warnings will at least partially not be meaningful.

int MH_GetWarningsText (int devidx, char* text, int warnings);

arguments: devidx: device index 0..7
text: pointer to a buffer for at least 16384 characters

warnings: integer bitfield obtained from MH_GetWarnings

return value: =0 success
<0 error

Note: This can be used to translate warnings obtained by MH_GetWarnings to a human-readable text.

int MH_GetSyncPeriod (int devidx, double* period);

arguments: devidx: device index 0..7
period: pointer to a double precision float (64 bit)

returning the sync period in seconds

return value: =0 success
<0 error

Note: This call only gives meaningful results while a measurement is running and after two sync periods have elapsed.
The return value is undefined in all other cases. Resolution is that of the device’s base resolution. Accuracy is determined by
single shot jitter and clock stability.

Page 30

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

7.2.4. Special Functions for TTTR Mode

int MH_ReadFiFo (int devidx, unsigned int* buffer, int* nactual);

arguments: devidx: device index 0..7
buffer: pointer to an array of TTREADMAX dwords (32bit)

where the retrieved TTTR data will be stored
nactual: pointer to an integer

returns the number of TTTR records received

return value: =0 success
<0 error

Note: The call will return typically after 10 ms and even less if no more data could be fetched. The call may occasionally take
longer due to USB overhead and operating system latencies, especially when the PC or the USB connection is slow. Buffer
must not be accessed until the call returns.

int MH_SetMarkerEdges (int devidx, int en1, int en2, int en3, int en4);

arguments: devidx: device index 0..7
me<n>: active edge of marker signal <n>,

0 = falling,
1 = rising

return value: =0 success
<0 error

Note: This can be used to change the active edge on which the external TTL signals connected to the marker inputs are triggering.
Only meaningful in TTTR mode.

int MH_SetMarkerEnable (int devidx, int en0, int en1, int en2, int en3);

arguments: devidx: device index 0..7
en<n>: desired enable state of marker signal <n>,

0 = disabled,
1 = enabled

return value: =0 success
<0 error

Note: This can be used to enable or disable the external TTL marker inputs. Only meaningful in TTTR mode.

int MH_SetMarkerHoldoffTime (int devidx, int holdofftime);

arguments: devidx: device index 0..7
holdofftime: hold-off time in ns (0..HOLDOFFMAX)

return value: =0 success
<0 error

Note: This setting is not normally required but it can be used to deal with glitches on the marker lines. Markers following a previous
marker within the hold-off time will be suppressed. Note that the actual hold-off time is only approximated to about ±20ns.

int MH_SetOflCompression (int devidx, int holtime); //new since v3.1

arguments: devidx: device index 0..7
holdtime: hold time in ms (0..HOLDTIMEMAX)

return value: =0 success
<0 error

Page 31

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

Note: This setting is not normally required but it can be useful when data rates are very low and there are more overflows than
photons. The hardware will then count overflows and only transfer them to the FiFo when holdtime has elapsed. The default
value is 2 ms as of v3.1. Previously it used to be 0 (no compression). If you are implementing a real-time preview and data
rates are very low you may observe “stutter” when holdtime is chosen too large because then there is nothing coming out of
the FiFo for longer times. Indeed this is aggravated by the fact that the FiFo has a transfer granularity of 16 records. Sup-
posing a data stream without any regular event records (i.e. only overflows) this means that effectively there will be transfers
only every 16*holdtime ms. Whenever there is a true event record arriving (photons or markers) the previously accumulated
overflows will instantly be transferred. This may be the case merely due to dark counts, so the “stutter” would rarely occur. In
any case you can switch overflow compression off by setting holdtime 0.

7.2.5. Special Functions for TTTR Mode with Event Filtering
Starting from version 3.1.0.0 the library supports event filtering in hardware (see section 5.7). This helps to
reduce USB bus load in TTTR mode by eliminating photon events that carry no information of interest as typ-
ically found in many coincidence correlation experiments. Please read the MultiHarp manual for details. Note
that this new feature requires suitable gateware. Devices shipped after April 2022 will have this readily in-
stalled. For older devices you can request an update. Please note that the budget models MultiHarp 150 N
cannot be upgraded for this feature. Availability of the feature can be probed with MH_GetFeatures, the bit
FEATURE_EVNT_FILT will be 1 if it is available.

int MH_SetRowEventFilter(int devidx, int rowidx, int timerange, int matchcnt,
 int inverse, int usechannels, int passchannels); //new since v3.1

arguments: devidx: device index 0..7
rowidx: index of the row of input channels, counts bottom to top

(ROWIDXMIN..ROWIDXMAX)
timerange: time distance in ps to other events to meet filter condition

(TIMERANGEMIN..TIMERANGEMAX)
matchcnt: number of other events needed to meet filter condition

(MATCHCNTMIN..MATCHCNTMAX)
inverse: set regular or inverse filter logic

0 = regular,
1 = inverse

usechannels: integer bitfield with bit0 = leftmost input channel,..
bit7 = rightmost input channel, bit8 and higher must be 0

bit value 1 = use this channel,
bit value 0 = ignore this channel

passchannels: integer bitfield with bit0 = leftmost input channel,..
bit7 = rightmost input channel, bit8 and higher must be 0

bit value 1 = unconditionally pass this channel,
bit value 0 = pass this channel subject to filter condition

return value: =0 success
<0 error

Note: This sets the parameters for one Row Filter implemented in the local FPGA processing that row of input channels. Each
Row Filter can act only on the input channels within its own row and never on the sync channel. The value timerange de-
termines the time window the filter is acting on. The parameter matchcnt specifies how many other events must fall into the
chosen time window for the filter condition to act on the event at hand. The parameter inverse inverts the filter action, i.e.
when the filter would regularly have eliminated an event it will then keep it and vice versa. For the typical case, let it be not
inverted. Then, if matchcnt is 1 we will obtain a simple ‘singles filter’. This is the most straight forward and most useful filter
in typical quantum optics experiments. It will suppress all events that do not have at least one coincident event within the
chosen time range, be this in the same or any other channel marked as ‘use’ in this row. The bitfield passchannels is used
to indicate if a channel is to be passed through the filter unconditionally, whether it is marked as ‘use’ or not. The events on a
channel that is marked neither as ‘use’ nor as ‘pass’ will not pass the filter, provided the filter is enabled. The parameter set -
tings are irrelevant as long as the filter is not enabled. The output from the Row Filters is fed to the Main Filter. The overall
filtering result depends on their combined action. Only the Main Filter can act on all channels of the MutiHarp device includ -
ing the sync channel. It is usually sufficient and easier to use the Main Filter alone. The only reasons for using the Row Fil -
ter(s) are early data reduction, so as to not overload the Main Filter, and the possible need for more complex filters, e.g. with
different time ranges.

int MH_EnableRowEventFilter(int devidx, int rowidx, int enable); //new since v3.1

arguments: devidx: device index 0..7
rowidx: index of the row of input channels, counts bottom to top

(ROWIDXMIN..ROWIDXMAX)
enable: desired enable state of the filter

Page 32

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

0 = disabled
1 = enabled

return value: =0 success
<0 error

Note: When the filter is disabled all events will pass. This is the default after initialization. When it is enabled, events may be
filtered out according to the parameters set with MH_SetRowEventFilter.

int MH_SetMainEventFilterParams(int devidx, int timerange, int matchcnt, int inverse);
//new since v3.1

arguments: devidx: device index 0..7
timerange: time distance in ps to other events to meet filter condition

(TIMERANGEMIN..TIMERANGEMAX)
matchcnt: number of other events needed to meet filter condition

(MATCHCNTMIN..MATCHCNTMAX)
inverse: set regular or inverse filter logic

0 = regular,
1 = inverse

return value: =0 success
<0 error

Note: This sets the parameters for the Main Filter implemented in the main FPGA processing the aggregated events arriving from
the row FPGAs. The Main Filter can therefore act on all channels of the MutiHarp device including the sync channel. The
value timerange determines the time window the filter is acting on. The parameter matchcnt specifies how many other
events must fall into the chosen time window for the filter condition to act on the event at hand. The parameter inverse in-
verts the filter action, i.e. when the filter would regularly have eliminated an event it will then keep it and vice versa. For the
typical case, let it be not inverted. Then, if matchcnt is 1 we obtain a simple ‘singles filter’. This is the most straight forward
and most useful filter in typical quantum optics experiments. It will suppress all events that do not have at least one coincid -
ent event within the chosen time range, be this in the same or any other channel. In order to mark individual channel as ‘use’
and/or ‘pass’ please use MH_SetMainEventFilterChannels.The parameter settings are irrelevant as long as the filter is not
enabled. Note that the Main Filter only receives event data that passes the Row Filters (if they are enabled). The overall fil-
tering result therefore depends on the combined action of both filters. It is usually sufficient and easier to use the Main Filter
alone. The only reasons for using the Row Filters are early data reduction, so as to not overload the Main Filter, and the pos-
sible need for more complex filters, e.g. with different time ranges.

int MH_SetMainEventFilterChannels(int devidx, int rowidx, int usechannels, int passchannels);
//new since v3.1

arguments: devidx: device index 0..7
rowidx: index of the row of input channels, counts bottom to top

(ROWIDXMIN..ROWIDXMAX)
usechannels: integer bitfield with bit0 = leftmost input channel,..

bit7 = rightmost input channel,
if rowindex is 0 then bit8 = sync channel,
bit9 and higher must be 0

bit value 1 = use this channel,
bit value 0 = ignore this channel

passchannels: integer bitfield with bit0 = leftmost input channel,..
bit7 = rightmost input channel,
if rowindex is 0 then bit8 = sync channel
bit9 and higher must be 0

bit value 1 = unconditionally pass this channel,
bit value 0 = pass this channel subject to filter condition

return value: =0 success
<0 error

Note: This selects the Main Filter channels for one row of input channels. Doing this row by row is to address the fact that the vari-
ous device models have different numbers of rows. The bitfield usechannels is used to to indicate if a channel is to be
used by the filter. The bitfield passchannels is used to to indicate if a channel is to be passed through the filter uncondi -
tionally, whether it is marked as ‘use’ or not. The events on a channel that is marked neither as ‘use’ nor as ‘pass’ will not
pass the filter, provided the filter is enabled. The settings for the sync channel are meaningful only in T2 mode and will be ig-
nored in T3 mode. The channel settings are irrelevant as long as the filter is not enabled. The Main Filter receives its input
from the Row Filters. If the Row Filters are enabled, the overall filtering result therefore depends on the combined action of
both filters. Only the Main Filter can act on all channels of the MutiHarp device including the sync channel. It is usually suffi-
cient and easier to use the Main Filter alone. The only reasons for using the Row Filter(s) are early data reduction, so as to
not overload the Main Filter, and the possible need for more complex filters, e.g. with different time ranges.

Page 33

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

int MH_EnableMainEventFilter(int devidx, int enable); //new since v3.1

arguments: devidx: device index 0..7
enable: desired enable state of the filter

0 = disabled
1 = enabled

return value: =0 success
<0 error

Note: When the filter is disabled all events will pass. This is the default after initialization. When it is enabled, events may be
filtered out according to the parameters set with MH_SetMainEventFilterParams and MH_SetMainEventFilterChannels. Note
that the Main Filter only receives event data that passes the Row Filters (if they are enabled). The overall filtering result
therefore depends on the combined action of both filters. It is usually sufficient and easier to use the Main Filter alone. The
only reasons for using the Row Filters are early data reduction, so as to not overload the Main Filter, and the possible need
for more complex filters, e.g. with different time ranges.

int MH_SetFilterTestMode(int devidx, int testmode); //new since v3.1

arguments: devidx: device index 0..7
testmode: desired mode of the filter

0 = regular operation
1 = testmode

return value: =0 success
<0 error

Note: One important purpose of the event filters is to reduce USB load. When the input data rates are higher than the USB band-
with, there will at some point be a FiFo overrun. It may under such conditions be difficult to empirically optimize the filter set-
tings. Setting filter test mode disables all data transfers into the FiFo so that a test measurement can be run without interrup-
tion by a FiFo overrun. The library routines MH_GetRowFilteredRates and MH_GetMainFilteredRates can then be used to
monitor the count rates after the Row Filter and after the Main Filter. When the filtering effect is satisfactory the test mode
can be switched off again to perform the regular measurement.

int MH_GetRowFilteredRates(int devidx, int* syncrate, int* cntrates);

arguments: devidx: device index 0..7
syncrate: pointer to an integer variable receiving the sync rate
cntrates: pointer to an array of integer variables of the form

 int cntrates[num_channels] receiving the count rates

return value: =0 success
<0 error

Note: This call retrieves the count rates after the Row Filters before entering the Main Filter. A measurement must be running to
obtain valid results. Allow at least 100 ms to get a new reading. This is the gate time of the rate counters. Make sure that the
array cntrates is large enough for the number of input channels your device has. The safest approach is to dimension it
for MAXINPCHAN, i.e. 64 channels.

int MH_GetMainFilteredRates(int devidx, int* syncrate, int* cntrates);

arguments: devidx: device index 0..7
syncrate: pointer to an integer variable receiving the sync rate
cntrates: pointer to an array of integer variables of the form

 int cntrates[num_channels] receiving the count rates

return value: =0 success
<0 error

Note: This call retrieves the count rates after the Main Filter before entering the FiFo. A measurement must be running to obtain
valid results. Allow at least 100 ms to get a new reading. This is the gate time of the rate counters. Make sure that the array
cntrates is large enough for the number of input channels your device has. The safest approach is to dimension it for
MAXINPCHAN, i.e. 64 channels.

Page 34

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

7.2.6. Special Functions for White Rabbit

int MH_WRabbitGetMAC (int devidx, char* mac_addr);

arguments: devidx: device index 0..7
mac_addr: pointer to an array of six bytes to receive the MAC address

return value: =0 success
<0 error

Note: MHLib v1.0 was unnecessarily writing a 7th byte of value 0 here, this has been fixed since v1.1

int MH_WRabbitSetMAC (int devidx, char* mac_addr);

arguments: devidx: device index 0..7
mac_addr: pointer to an array of six bytes holding the MAC address

return value: =0 success
<0 error

Note: The MAC address must be unique, at least with in the network you are using.

int MH_WRabbitGetInitScript (int devidx, char* initscript);

arguments: devidx: device index 0..7
initscript: pointer to buffer for at least 256 characters

return value: =0 success
<0 error

Note: This can be used to retrieve the WR initialization script (if any) from EEPROM. Lines are separated by newline characters.
For details on script syntax etc. see the MultiHarp manual and the White Rabbbit documentation.

int MH_WRabbitSetInitScript(int devidx, char* initscript);

arguments: devidx: device index 0..7
initscript: pointer to buffer with init script, max 256 characters

return value: =0 success
<0 error

Note: This can be used to place a WR initialization script in device EEPROM. Lines are separated by newline characters.
For details on script syntax etc. see the MultiHarp manual and the White Rabbbit documentation.

int MH_WRabbitGetSFPData(int devidx, char* sfpnames, int* dTxs, int* dRxs, int* alphas);

arguments: devidx: device index 0..7
sfpnames: pointer to character array of the form: char sfpnames[4][20]
dTxs: pointer to integer array of the form: int dTxs[4]
dRxs: pointer to integer array of the form: int dRxs[4]
alphas: pointer to integer array of the form: int alphas[4]

return value: =0 success
<0 error

Note: This can be used to retrieve the SFP module calibration data (if any) from EEPROM.
For details on SFP module calibration see the MultiHarp manual and the White Rabbbit documentation.

Page 35

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

int MH_WRabbitSetSFPData(int devidx, char* sfpnames, int* dTxs, int* dRxs, int* alphas);

arguments: devidx: device index 0..7
sfpnames: pointer to character array of the form: char sfpnames[4][20]
dTxs: pointer to integer array of the form: int dTxs[4]
dRxs: pointer to integer array of the form: int dRxs[4]
alphas: pointer to integer array of the form: int alphas[4]

return value: =0 success
<0 error

Note: This can be used to place the SFP module calibration data in EEPROM.
For details on SFP module calibration see the MultiHarp manual and the White Rabbbit documentation.

int MH_WRabbitInitLink(int devidx, int link_on);

arguments: devidx: device index 0..7
link_on: 0 = off, 1 = on

return value: =0 success
<0 error

Note: This can be used to switch the WR link on and off. For details on WR link setup see the MultiHarp manual and the White
Rabbbit documentation.

int MH_WRabbitSetMode(int devidx, int bootfromscript, int reinit_with_mode, int mode);

arguments: devidx: device index 0..7
bootfromscript: boot from script in EEPROM, 0 = yes, 1 = no
reinit_with_mode: 0 = probe if previous mode set is completed

1 = re-initialize with new mode
mode: 0 = off, 1 = Slave, 2 = Master, 3 = Grandmaster

return value: =0 success
<0 error

Note: This can be used to make the WR core boot from the init script in EEPROM. It can also be used to select the WR mode and
probe for completion. For details on WR link setup see the MultiHarp manual and the White Rabbbit documentation.

int MH_WRabbitSetTime(int devidx, unsigned int timehidw, unsigned int timelodw);

arguments: devidx: device index 0..7
timehidw: unix time in sec, most significant dword
timelodw: unix time in sec, least significant dword

return value: =0 success
<0 error

Note: This can be used to set the current UTC time of a MultiHarp’s WR core configured as WR master. If a slave is connected it
will be set to the same time. For details on WR time handling see the White Rabbbit documentation.

int MH_WRabbitGetTime(int devidx, unsigned int* timehidw, unsigned int* timelodw,
 unsigned int* subsec16ns);

arguments: devidx: device index 0..7
timehidw: unix time in sec, most significant dword
timelodw: unix time in sec, least significant dword
subsec16ns: unix time sub-seconds in steps of 16 ns

return value: =0 success
<0 error

Note: This can be used to retrieve the current UTC time of a MultiHarp’s WR core. For details on WR time handling see the White
Rabbbit documentation.

Page 36

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

int MH_WRabbitGetStatus(int devidx, int* wrstatus);

arguments: devidx: device index 0..7
wrstatus: pointer to an integer receiving the status

return value: =0 success
<0 error

Note: The status must be interpreted as a bit field. Use the bit masks WR_STATUS_XXX as defined in mhdefin.h. For details on
WR status see the White Rabbbit documentation.

int MH_WRabbitGetTermOutput(int devidx, char* buffer, int* nchar);

arguments: devidx: device index 0..7
buffer: pointer to a text buffer of at least 513 characters
nchar: pointer to an integer receiving the actual text length

return value: =0 success
<0 error

Note: When the MultiHarp’s WR core has received the commend gui (should be the last line of the init script) it sends terminal
output describing its state. This routine can then be used to retrieve that terminal output as a null terminated string. This
needs to be done repeatedly. The output will contain escape sequences for control of text color, screen refresh, etc. In order
to present it correctly these escape sequences must be interpreted and translated to the corresponding control mechanisms
of the chosen display scheme. To take care of this the data can be sent to a terminal emulator. Note that this is read-only.
There is currently no way of injecting commands to the WR core’s console prompt.

7.2.7. Special Functions for the External FPGA Interface

The functions in this category are provided for use with the External FPGA Interface (EFI) of the MultiHarp
160 only. They will not work with a MultiHarp 150. In order to determine their availability you can use
MH_GetFeatures in conjunction with the macro FEATURE_EXT_FPGA defined in mhdefin.h. For all further
details on how to work with the EFI please see the separate manual on the topic.

int MH_ExtFPGAInitLink (int devidx, int linknumber, int on); // new since v3.0

arguments: devidx: device index 0..7
linknumber: index 0..8 of the link to be initialized
on: 0 = off, 1 = on

return value: =0 success
<0 error

Note: The number of usable links depends on the configuration of the MultiHarp 160 in use.

int MH_ExtFPGAGetLinkStatus (int devidx, int linknumber, unsigned int* status); // new since v3.0

arguments: devidx: device index 0..7
linknumber: index 0..8 of the link to be queried
status: pointer to unsigned int buffer of at least 9 elements

return value: =0 success
<0 error

Note: The number of usable links depends on the configuration of the MultiHarp 160 in use. The status is reported for each link in -
dependently. The meaning of the status is dependent on the external FPGA and is further defined in the EFI programming
guide.

Page 37

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

int MH_ExtFPGASetMode (int devidx, int mode, int loopback); // new since v3.0

arguments: devidx: device index 0..7
mode: stream mode code to be set, see mhdefin.h
loopback: loopback mode code to be set, see mhdefin.h

return value: =0 success
<0 error

Note: The number of usable links depends on the configuration of the MultiHarp 160 in use.

int MH_ExtFPGAResetStreamFifos (int devidx); // new since v3.0

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: This function should typically be called after each call of the MH_Initialize() function. For details see the EFI programming
guide.

int MH_ExtFPGAUserCommand (int devidx, int write, unsigned int addr, unsigned int* data);
// new since v3.0

arguments: devidx: device index 0..7
write: 0 = read, 1 = write
addr: an “address” for the data in the external FPGA
data: pointer to location of data to write or to receive

return value: =0 success
<0 error

Note: This function is provided to allow data transfer to and from the external FPGA. The “address” may be understood as a com-
mand code associated with the data. The meaning of such user commands is specific to the custom EFI design and must
be implemented there in order to work here at the software level. The primary objective is to facilitate control mechanisms
but data transfer is also possible, albeit with limited speed.

Page 38

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

7.3. Warnings
The following is related to the warnings (possibly) generated by the library routine MH_GetWarnings. The
mechanism and warning criteria are the same as those used in the regular MultiHarp software and depend on
the current count rates and the current measurement settings.

Note that the software can detect only a subset of all possible error conditions. It is therefore not safe to as-
sume “all is right” just by obtaining no warning. It is also necessary that MH_GetSyncrate and MH_Get-
Coutrate has been called (the latter for all channels) before MH_GetWarnings is called.

The warnings are to some extent dependent on the current measurement mode. Not all warnings will occur in
all measurement modes. Also, count rate limits for a specific warning may be different in different modes. The
following table lists the possible warnings in the three measurement modes and gives some explanation as to
their possible cause and consequences.

Warning Histo Mode T2 Mode T3 Mode

WARNING_SYNC_RATE_ZERO

No counts are detected at the sync input. In histogramming
and T3 mode this is crucial and the measurement will not
work without this signal.

√ √

WARNING_SYNC_RATE_VERY_LOW

The detected pulse rate at the sync input is below 100 Hz and
cannot be determined accurately. Other warnings may not be
reliable under this condition.

√ √

WARNING_SYNC_RATE_TOO_HIGH

The pulse rate at the sync input (after the divider) is higher
than 75 MHz. This is close to the TDC limit. Sync events will
be lost above 78 MHz. T2 mode is normally intended to be
used without a fast sync signal and without a divider. If you
see this warning in T2 mode you may accidentally have con-
nected a fast laser sync.

√ √ √

WARNING_INPT_RATE_ZERO

No counts are detected at any of the input channels. In histo-
gramming and T3 mode these are the photon event channels
and the measurement will yield nothing. You might sporadic-
ally see this warning if your detector has a very low dark
count rate and is blocked by a shutter. In that case you may
want to disable this warning.

√ √ √

WARNING_INPT_RATE_TOO_HIGH

The overall pulse rate at the input channels is higher than 80
MHz (USB 3.0 connection) or higher than 9 MHz (USB 2.0
connection). This is close to the throughput limit of the present
USB connection. The measurement will likely lead to a FIFO
overrun. There are some rare measurement scenarios where
this condition is expected and the warning can be disabled.
Examples are measurements where the FIFO can absorb all
data of interest before it overflows.

√ √ √

Page 39

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

WARNING_INPT_RATE_RATIO

This warning is issued in histogramming and T3 mode when
the rate at any input channel is higher than 5% of the sync
rate. This is the classical pile-up criterion. It will lead to notice-
able dead-time artefacts. There are rare measurement scen-
arios where this condition is expected and the warning can be
disabled. Examples are antibunching measurements or rapid-
FLIM where pile-up is either tolerated or corrected for during
data analysis. One can usually also ignore this warning when
the current time bin width is larger than the dead-time.

√ √

WARNING_DIVIDER_GREATER_ONE

In T2 mode:

The sync divider is set larger than 1. This is probably not in-
tended. The sync divider is designed primarily for high sync
rates from lasers and requires a fixed pulse rate at the sync
input. In that case you should use T3 mode. If the signal at
the sync input is from a photon detector (coincidence correla-
tion etc.) a divider > 1 will lead to unexpected results. There
are rare measurement scenarios where this condition is inten-
tional and the warning can be disabled.

In histogramming and T3 mode:

If the pulse rate at the sync input is below 75 MHz then a Syn-
cDivider >1 is not needed. The measurement may yield unne-
cessary jitter if the sync source is not very stable.

√ √ √

WARNING_TIME_SPAN_TOO_SMALL

This warning is issued in histogramming and T3 mode when
the sync period (1/SyncRate) is longer that the start to stop
time span that can be covered by the histogram or by the T3
mode records. You can calculate this time span as follows:

 Span = Resolution * Length

Length is 32768 in T3 mode. In histogramming mode it
depends on the chosen histogram length (default is 65536).
Events outside this span will not be recorded. There are some
measurement scenarios where this condition is intentional
and the warning can be disabled.

√ √

WARNING_OFFSET_UNNECESSARY

This warning is issued in histogramming and T3 mode when
an offset >0 is set even though the sync period (1/SyncRate)
can be covered by the measurement time span (see
calculation above) without using an offset. The offset may
lead to events getting discarded. There are some
measurement scenarios where this condition is intentional
and the warning can be disabled.

√ √

WARNING_COUNTS_DROPPED

This warning is issued when the front end of the data
processing pipeline was not able to process all events that
came in. This will occur typically only at very high count rates
during intense bursts of events.

√ √ √

Page 40

PicoQuant GmbH MultiHarp MHLib Programming Library V. 3.1.0.0

If any of the warnings you receive indicate wrong pulse rates, the cause may be inappropriate input settings,
wrong pulse polarities, poor pulse shapes or bad connections. If in doubt, check all signals with an oscillo-
scope of sufficient bandwidth.

Page 41

All information given here is reliable to our best knowledge. However, no responsibility is assumed for possible inaccuracies
or omissions. Specifications and external appearances are subject to change without notice.

PicoQuant GmbH
Rudower Chaussee 29 (IGZ)
12489 Berlin
Germany

P +49-(0)30-1208820-0
F +49-(0)30-1208820-90
info@picoquant.com
http://www.picoquant.com

	1. Introduction
	2. General Notes
	2.1. What’s new in this Version
	2.2. Warranty and Legal Terms
	Disclaimer
	License and Copyright Notice
	Acknowledgements

	3. Installation of the MHLib Software Package
	4. The Demo Applications
	4.1. Functional Overview
	Histogramming Mode Demos
	TTTR Mode Demos

	4.2. The Demo Applications by Programming Language
	The C / C++ Demos
	The Delphi / Lazarus Demos
	The Python Demos
	The LabVIEW Demos
	The MATLAB Demos

	5. Advanced Techniques
	5.1. Using Multiple Devices
	5.2. Efficient Data Transfer
	5.3. Instant TTTR Data Processing
	5.4. Working with Warnings
	5.5. Hardware Triggered Measurements
	5.6. Working with the External FPGA Interface
	5.7. Working with Event Filtering

	6. Problems, Tips & Tricks
	6.1. PC Performance Requirements
	6.2. USB Interface
	6.3. Troubleshooting
	6.4. Access permissions
	6.5. Version tracking
	6.6. Software Updates
	6.7. Bug Reports and Support

	7. Appendix
	7.1. Data Types
	7.2. Functions Exported by MHLib.DLL
	7.2.1. General Functions
	7.2.2. Device Related Functions
	7.2.3. Functions for Use on Initialized Devices
	7.2.4. Special Functions for TTTR Mode
	7.2.5. Special Functions for TTTR Mode with Event Filtering
	7.2.6. Special Functions for White Rabbit
	7.2.7. Special Functions for the External FPGA Interface

	7.3. Warnings

