
MultiHarp 150/160

IP and Software Library for
FPGA-based Time Tag Processing

Programming Reference Handbook

Document version 2.0.0

EFI - External FPGA Interface for MultiHarp 150/160

PicoQuant GmbH MultiHarp 150/160 Programming Reference

Table of Contents

1. Introduction..2

2. Getting started with the External FPGA Interface...3

2.1. Performance and utilization numbers of the example design..3

2.2. System Requirements of the example design...3

2.3. Setting up the Hardware..3

2.4. Generating the Gateware...4

2.5. Testing the System..4

2.6. Modifying the Example Design..4

2.7. Simulating the Design..5

2.8. Porting the Design to other FPGAs..5

3. External FPGA Interface IP Reference...6

3.1. TCLK Domain Status Signals..7

3.2. T2DM Stream...8

3.3. T2/T3 Stream...9

3.4. Loopback Stream...9

3.5. Loopback Stream Status Signals...9

3.6. SYSCLK Domain Status Signals...10

3.7. USER_REG Interface..10

3.8. I/O Signals..11

4. Software Programming Guide...12

5. Glossary..13

6. Legal Terms...15

5.1. Copyright..15

5.2. Trademarks..15

Page 1

PicoQuant GmbH MultiHarp 150/160 Programming Reference

1. Introduction
The MultiHarp is a cutting edge TCSPC system with USB interface. Its new integrated design provides a
flexible number of input channels at reasonable cost and allows innovative measurement approaches. The
timing circuits allow high measurement rates up to 78 million counts per second (Mcps) with an excellent time
resolution and a record breaking deadtime of 650 ps. The modern USB 3.0 interface provides very high
throughput as well as ‘plug and play’ installation. The input triggers are adjustable for a wide range of input
signals providing programmable level triggers for both negative and positive going signals. These
specifications qualify the MultiHarp for use with most common single photon detectors such as Single Photon
Avalanche Diodes (SPADs), Superconducting Nanowire Single Photon Detetors (SNSPD), and
Photomultiplier Tube (PMT) modules (via preamplifier). Depending on detector and excitation source the
width of the overall Instrument Response Function (IRF) can be as small as 80 ps FWHM. The MultiHarp 160
can be purchased with 16, 32, 48 or 64 timing inputs and one synchronization (sync) input. The use of these
inputs is very flexible. In fluorescence lifetime applications the sync channel is typically used as a
synchronization input from a laser. The other inputs are then used for photon detectors. In coincidence
correlation applications all inputs including the sync input can be used for photon detectors.

The MultiHarp USB 3 interface, together with its TTTR measurement modes, enables a great performance
and flexibility trade-off for most use cases. However, when targeting very high counts per second or large
experimentation setups with up to 64 channels, it may not provide enough bandwidth. In some setups it may
also be undesirable to only process data in the standerd TTTR file formats. Finally, the computer attached to
the USB interface must keep up to the data generated by the MultiHarp, which can be a challenge when
running complex real-time data analysis algorithms.

The External FPGA Interface (EFI) for MultiHarp 150/160 addresses those challenges. It uses one or more
high speed serial link cables to transfer data to an external FPGA. On such a board custom processing and
I/O can be performed with virtually unlimited flexibility. This solves the above mentioned problems, as (1) high
speed serial links increase the bandwidth by an order of magnitude, (2) event data can be processed in a raw
format and (3) complex processing algorithms can be performed in real-time.

There are two options for using EFI: using the backside connector (EFI REAR) or the front side connector
(EFI SFP) with an SFP module. The backside connector provides high-bandwidth data streaming with T2/T3
or RAW data, while the front side SFP connector allows for easy and flexible T2/T3 data streaming. You can
choose the interface based on your needs. The MH150 features only the front side SFP port (EFI SFP). Note
that streaming data via the front SFP port disables the White Rabbit feature.

In order to streamline the development of EFI solutions, PicoQuant provides an initial set of gateware and
software IP. Custom logic, which can be written in VHDL, Verilog or any other Xilinx Vivado supported
language, only needs to be connected to a set of high-level data stream interfaces. The user can choose to
either receive the raw timing data or the pre-processed TTTR T2 or T3 mode time tags. Through a loopback
interface, custom data generated by the FPGA can be transmitted back trough the USB3 interface and be
read out by a user application using PicoQuant’s programming library functions. The FPGA logic can be
easily verified against PTU files using the supplied simulation library. Deep customization of the gateware IP
is supported, as all required sources for the external FPGA are freely available.

The first part of this programming reference describes how to get started with the demo design. It is
recommended to read this part in its entirety before starting development with the External FPGA Interface.
The second part of this document contains a reference of the interface semantics of the gateware, how to
use the simulation library and a documentation of the External FPGA Interface specific functions of the
MultiHarp software programming library MHLib.

Page 2

PicoQuant GmbH MultiHarp 150/160 Programming Reference

2. Getting started with the External FPGA Interface
Compared to software analysis of time series data, FPGA based processing has many advantages. How-
ever, every FPGA based system requires thorough understanding and careful consideration of the design pa-
rameters in order to make good use of it. In order to jump-start the development with the EFI, this chapter is
in the format of a tutorial that familiarizes the user with the capabilities of the system.

In this tutorial we first show how to set up the MultiHarp 150/160 with the FPGA development boards. Fur-
thermore, a Vivado example project shows how to access the TTTR data streams in the FPGA. The tutorial
thus also serves as a good starting point for developing custom EFI-based solutions. We therefore strongly
recommend starting with this tutorial when you first use the External FPGA Interface.

2.1. Performance numbers of the example design

The following table lists the maximum event rates and the latency depending on the configuration of the Mul-
tiHarp. The latency is measured by subtracting the arrival time of the event pulse at the MultiHarp from the
arrival time of the corresponding TTTR tag in the external FPGA.

MultiHarp
Configuration

Maximum Event Rate
EFI REAR

Maximum Event Rate
EFI SFP

Latency

Histogramming
Mode

Not supported Not supported Not supported

T2 Mode 200M events/second 156M events/second 4.5 µs to 5.0 µs

T3 Mode 200M events/second 156M events/second 4.5 µs to 5.5 µs

T2 Direct Mode
(MH160 only)

78M events/second for the Sync
+
200M events/second shared
among each horizontal row of 8
inputs
= total maximum 1.678G
events/second

Not supported Sync: 1.7 µs to
1.8 µs
Others: 0.8µs to
1.2 µs

2.2. System Requirements of the example design

In order to follow this guide the following requirements should be met:

• The External FPGA Interface 2.0.0 source package downloaded and unpacked

• A Windows 10 x64 computer with the MultiHarp device driver and programming library installed

• A C/C++ compiler that supports at least C++14, such as gcc (using Mingw-w64), clang or MSVC

• A signal source for the MultiHarp for testing purposes (e.g. PicoQuant PDL 800-D)

• Development board + dependencies from the table below

Development
Board

EFI REAR EFI SFP Vivado
Version

Additional required parts

Genesys 2 x 2018.3 EFI FMC Adapter

License for the XC7K325T FPGA

MultiHarp 160 EFI cable

AC701 x 2022.2 two compatible SFP+ modules and a matching cable

ZCU104 x 2022.2 Trenz TEF0008 FMC SFP adapter
two compatible SFP+ modules and a matching cable

Page 3

PicoQuant GmbH MultiHarp 150/160 Programming Reference

This guide assumes understanding of the MHLib programming library and Multiharp 150/160 documentation.
Understanding the development board's reference manual is mandatory before proceeding.

If you are using the EFI SFP, you can use one of the tested SFP+ modules from the table below.

SFP Module Manufacturer Description

TL-SM5110-SR TP-link 10G Laser based fiber transmitter

CAB-10GSFP-P0.5M Highfiber DAC (direct access cable, copper cable 30cm)

SFP-10G-SR-C OEM 10G Laser based fiber transmitter

UACC-OM-SFP28-SR Ubiquiti 25G Laser based fiber transmitter

HP PN 721000-001 HP 10G Laser based fiber transmitter

2.3. Setting up the Hardware

1. Turn on the MultiHarp 150/160 and connect the USB3 cable to the computer;

2. Connect your development board through the appropriate connector (EFI SFP or EFI REAR) of your
MultiHarp using a suitable cable;

3. Connect the USB JTAG and USB UART cables from your development board to the PC and turn on
the board.

2.4. Generating the Gateware

There are two options to generate the bitstream for the reference design. The first one is to use the pre-gen-
erated project files. This is the easiest and fastest option to get started. The second option is to generate the
project yourself. For the second approach PicoQuant provides scripts to help you generate and build the
project from scratch. You can also use pre-existing project file for building the bitstream. Please refer to the
README.md in the project folder.

1. Ensure that you have all the license files installed correctly by your FPGA in the Xilinx license
manger, if not the build process will fail.

2. Install the board files for your FPGA Board, go to Vivado→Tools→Vivado Store→Boards

3. Extract the External FPGA Interface source package to a destination of your choice or start the
build.tcl script.

4. Extract the gateware sources in the <package location>/gateware/ folder.

5. Open the Vivado project located in the folder <package location>/gateware/prj_name. It is
recommended to not nest Vivado projects to deep into the filesystem, as Windows may be con-
strained by path length limitations.

6. Generate the bitstream or use the prebuilt one.

7. Open the device manager, select auto connect and program the FPGA.

2.5. Testing the System

1. Ensure that the MultiHarp driver and library are installed correctly and that the system can connect to
the device by opening the MultiHarp application.

2. Connect your signal sources to the MultiHarp. For mere testing these can be generator signals e.g.
the sync output from a PDL 800. For T2 mode measurements it is sufficient to connect this signal to
the MultiHarp sync input. This is a good and simple starting point. For T3 mode measurements you
also need a signal on one of the input channels of the MultiHarp. For details on the two different
modes please consult your MultiHarp manual.

3. Go to <package location>\software\API_example and compile the C code using MHLib.
Detailed instructions are provided in the MHLib programming guide.

4. Run the generated executable.

Page 4

PicoQuant GmbH MultiHarp 150/160 Programming Reference

5. Check if the software raises any errors and if the reported count rates are correct.

6. Upon pressing a key in the console window the software will start a measurement for 50 millisec-
onds. The generated data is sent to external FPGA and count rates per channel are calculated in
FPGA logic. Those are periodically sent back to the host using the loopback interface. The returned
data is displayed in the console window. If T2 or T3 loopback modes are used, the T2 or T3 records
are returned instead.

7. Make sure that all combinations of channels, external FPGA mode and loopback mode that you
require are working and returning sensible count rates.

8. This concludes the setup and getting started guide for the External FPGA Interface.

2.6. Modifying the Example Design

The example design is a good starting point for building your own data processing solution with the EFI. It is
therefore recommended to familiarize yourself with VHDL code in the Vivado project and the C code for the
host application.

The relevant source files for the example design are usr_application_example.vhd and *top.vhd ,
where * represents one of the possible combinations of FPGA boards and connection paths. The usr_appli-
cation_example file contains all the logic interfacing the EFI. This is where later you want to accommodate
your custom processing logic. The Top-file connects the user example and the EFI IP. When extending and
adding VHDL files you should make sure to include the pq_extfpga_lib library and pq_extfpga_pkg
package imports for all contexts.

The EFI uses an embedded Microblaze controller for various tasks. It is recommended to use the ELF file
that is supplied with the example project, as the inner workings of the EFI are not guaranteed to remain iden-
tical between revisions of this platform. However, should the need to recompile or modify the ELF file arise,
you can find the sources used to build the file in the folder <package location>/gateware/sdk.

2.7. Simulating the Design

The EFI design package contains a VHDL library for large scale simulation of the TTTR processing logic. The
code can be found in <package location>/gateware/hdl_src/pq_mhsim_lib/. This library con-
tains a simulation model of the MultiHarp, that can be connected directly to the top level entity of your FPGA
design. Photon and marker events can be fed into the simulation model using ptusim files. Using the CPP file
located in pq_mhsim_lib/sim/ptusim it is possible to convert PTU files into PTUSIM files. Start the simu-
lation using ModelSim by clicking "Run Simulation" in Vivado. The idea of using PTU files is that you can eas-
ily perform tests using real measured data.

2.8. Porting the design to other FPGAs

2.8.1. EFI FMC Connector (EFI REAR)

The EFI design package can be easily ported to other FPGA development boards and systems, as all re-
quired source are included and can be modified freely. It will require some degree of work on the internals of
the package, depending on how similar the desired FPGA is to one of the mentioned boards. The following
lists the potentially required changes depending on what kind of FPGA you want to use.

FPGA boards that contain the XC7K325T FPGA:

• The XDC file must be changed to reflect the different pinout.

• A matching EFI-FMC connector is required. You can fabricate your own using the schematics in-
cluded in the hardware folder, or you can contact PicoQuant support for assistance.

• Note that at least 2 GTX transceivers are required for the base functionality. If you wish to use the
T2DM channels, then one GTX transceiver is required per channel.

FPGA boards that contain a different Xilinx FPGA:

Page 5

PicoQuant GmbH MultiHarp 150/160 Programming Reference

• You must ensure that the “Aurora 8b/10b” IP-Core is supported for your FPGA. If the transceivers of
the FPGA are not “7 Series-GTX”, you must change the portion of the EFI-Design that connects the
transceivers with the Aurora-IP. You need to regenerate the Aurora-IP.

• The XDC file must be changed to reflect the different pinout.

• A new EFI-FMC connector may be required. You can fabricate your own using the schematics in-
cluded in the hardware folder, or you can contact PicoQuant support for assistance.

• Note that at least 2 GTX transceivers are required for the base functionality. If you wish to use the
T2DM channels, then one transceiver is required per channel.

FPGA from different vendors:

• Ensure that the device supports the PHY protocol outlined in the Aurora 8b/10b standard.

• You can use the provided VHDL-Code and simulation environment as reference to implement your
endpoint for the External FPGA Interface.

2.8.2. SFP Connector (EFI SFP)

Many modern FPGA development boards feature an SFP+ connector, simplifying the process of interfacing
with EFI. Migrate sources to another FPGA using SFP+ by following the steps below.

• Verify that your board has an SFP+ connector

• Verify that the GT reference clock can generate a 6.25 Gbit/s line rate, (125 MHz, 156.25 MHz work)

◦ check which clock is connected to the GT reference clock pins

◦ Use the IP generator Aurora 8B/10B, enter the line rate of 6.25 Gbit/s, and verify that your refer-
ence clock appears in the list of possible reference clocks

• Adapt the XDC file to your boards pinout

Boards not featuring an SFP+ connector

If your board lacks an SFP+ connector but has an FMC connector, you can use an SFP+ adaptor card such
as the TEF0008-02 from Trenz Elektronik. If using a different adapter card, modify the pin configuration ac-
cordingly.

• verify that the at least one SFP data pair (rx + tx) is routed through the FMC connector to your GT

◦ C6, C7, C2, C3 (RXP, RXN, TXP, TXN)

◦ A2, A3, A22, A23 (RXP, RXN, TXP, TXN)

◦ A6, A7, A26, A27 (RXP, RXN, TXP, TXN)

◦ A10, A11, A30, A31 (RXP, RXN, TXP, TXN)

• make sure the GT reference clock on the adapter card is routed from the FMC connector to your GT

◦ D4, D5 (GBTCLK0_P, GBTCLK0_N) 156.25 MHz

Page 6

PicoQuant GmbH MultiHarp 150/160 Programming Reference

3. External FPGA Interface IP Reference
The External FPGA Interface manages all communication with the MultiHarp transparently. The user can fo-
cus on implementing the data processing and I/O functions that are specific to her use case. The primary in -
terfaces of the EFI are the high speed tag streams for T2, T3 and T2DM channels, the USB3 loopback inter -
face and the user register configuration interface. The IP is provided as VHDL source.

The following image and table list all the signals and their properties for the EFI IP. The behavior of the sig-
nals is defined in the subsequent subchapters.

Page 7

PicoQuant GmbH MultiHarp 150/160 Programming Reference

Signal Name Signal Type Direction Domain Description

TCLK std_logic IN TCLK 200 MHz clock

TRSTN std_logic IN TCLK Active-low reset

EXT_FPGA_MODE std_logic_vector(1:0) OUT TCLK Defined in chapter 3.1

EXT_LOOPBACK_MODE std_logic_vector(1:0) OUT TCLK Defined in chapter 3.1

MEASUREMENT_ACTIVE std_logic OUT TCLK Defined in chapter 3.1

T2DM_DATA (EFI REAR only) t2dm_rec_vec(0:8) OUT TCLK Defined in chapter 3.2

T2R_DATA t2r_rec OUT TCLK Defined in chapter 3.3

T3R_DATA t3r_rec OUT TCLK Defined in chapter 3.3

LOOPBACK_STREAM_DATA std_logic_vector(31:0) IN TCLK Defined in chapter 3.4

LOOPBACK_STREAM_VALID std_logic IN TCLK Defined in chapter 3.4

LOOPBACK_STREAM_LAST std_logic IN TCLK Defined in chapter 3.4

LOOPBACK_READY std_logic OUT TCLK Defined in chapter 3.4

LOOPBACK_T2R_DATA t2r_rec OUT TCLK Defined in chapter 3.4

LOOPBACK_T3R_DATA t3r_rec OUT TCLK Defined in chapter 3.4

LOOPBACK_FIFO_NEW_FLAGS std_logic OUT TCLK Defined in chapter 3.5

LOOPBACK_FIFO_FILL_LEVEL std_logic_vector(15:0) OUT TCLK Defined in chapter 3.5

SYSLINK_STATUS system_link_status_rec OUT TCLK Defined in chapter 3.6

SYSCLK std_logic IN SYSCLK 100 MHz clock

SYSRSTN std_logic IN SYSCLK Active-low reset

USER_REG_ADDR std_logic_vector(31:0) OUT SYSCLK Defined in chapter 3.7

USER_REG_WDATA std_logic_vector(31:0) OUT SYSCLK Defined in chapter 3.7

USER_REG_RDATA std_logic_vector(31:0) IN SYSCLK Defined in chapter 3.7

USER_REG_WR std_logic OUT SYSCLK Defined in chapter 3.7

USER_REG_RD std_logic OUT SYSCLK Defined in chapter 3.7

USER_REG_RD_READY std_logic IN SYSCLK Defined in chapter 3.7

GBTCLK[0/1]_[P/N] std_logic IN Async IO Defined in chapter 3.8

M_EXT_MGT_TX[P/N] std_logic_vector(1:0) OUT Async IO Defined in chapter 3.8

M_EXT_MGT_RX[P/N] std_logic_vector(9:0) IN Async IO Defined in chapter 3.8

DBG_UART_TXD std_logic OUT Async IO Defined in chapter 3.8

3.1. TCLK Domain Status Signals

The TCLK domain contains three status output signals. The external FPGA can process data coming from
the MultiHarp in a variety of formats. The T3 and T2 data formats represent the data in an identical way as to
how they would be received in the host software and how they would appear in a PTU file. The T2DM, short
for T2 Direct Mode format, uses a variation of the T2 format. Using the EXT_FPGA_MODE signal, the exter-
nal FPGA logic can adapt to different timetag sources. It is encoded as follows:

EXT_FPGA_MODE(1:0) Name Description

00 efi_mode_off The external FPGA is not used.

01 efi_mode_t2raw The external FPGA receives data In the T2DM format.

10 efi_mode_t2r The external FPGA receives data In the T2 format.

11 efi_mode_t3r The external FPGA receives data In the T3 format.

Page 8

PicoQuant GmbH MultiHarp 150/160 Programming Reference

The external FPGA can send data from to the PC using the USB interface of the MultiHarp. This is referred to
as the loopback stream. Different data sources can be set up for this stream. The EXT_LOOPBACK_MODE
signal is encoded as follows:

EXT_LOOPBACK_MODE(1:0) Name Description

00 efi_loopback_off The loopback interface is turned off.

01 efi_loopback_user The loopback interface transports the
LOOPBACK_DATA data.

10 efi_loopback_t2 The loopback interface transports LOOPBACK_T2R
data.

11 efi_loopback_t3 The loopback interface transports LOOPBACK_T3R
data.

The signals EXT_FPGA_MODE and EXT_LOOPBACK_MODE are always valid and reflect the parameters
supplied to the MH_ExtFPGASetMode() MHLib call.
The MEASUREMENT_ACTIVE signal informs the external FPGA function whether a measurement is going
on or not. It is always valid.

3.2. T2DM Stream

The T2DM stream data is the key feature for running the External FPGA Interface at maximum performance.
It uses many serial high speed links to connect the external FPGA to the time measurement logic as directly
as possible. Using T2DM, it is possible to process more than 1.6G events/second using the MultiHarp 160
with 64 channels. It also reduces the latency between measurement and availability in the FPGA by 80%
compared to the T2/T3 streams. See performance table in section 2.1.

The streams of the T2DM-Mode are based on the semantics of T2-Mode. Please refer to the MultiHarp
User’s Manual for details on this mode. The following only explains the encoding differences to T2-Mode.

In T2DM mode the user logic interfaces with 3 to 9 streams. Stream zero only carries the events from the
sync input, as well as the marker inputs. All other streams carry the events of 8 inputs each, with stream one
containing events from the inputs 1 to 8, stream two containing events from the inputs 9 to 16, and so on.

The T2DM events are encoded in the t2dm_rec type. There are four different groups of code points in this
encoding, which are represented by the t2dm_tag_type. Using the get_t2dm_tag_type() call the tag
type of a t2dm_rec can be easily queried. The following table lists the different possible encodings and their
meanings.

wr ovfl channel(5:0) get_t2dm_tag_type Description

0 any any OTHER_TAG Invalid

1

0

00_00_00

EVENT_TAG

Event on local Channel 1. Never used on stream 0.

00_00_01 Event on local Channel 2. Never used on stream 0.

0X_XX_XX Event on local Channels 3-31 correspondingly. Never
used on stream 0.

01_11_11 Event on local Channel 32. Never used on stream 0.

10_00_00 Event on the Sync Channel. Only used on stream 0.

10_AB_CD MARKER_TAG
Marker 4 event when A = 1, Marker 3 event when B = 1
Marker 2 event when C = 1, Marker 1 event when D =
1. Only used on stream 0.

11_00_00

OTHER_TAG

Start of measurement for all channels on this stream.

11_00_01 End of measurement for all channels on this stream.

1

00_00_00
Unused

...

11_11_11 OVERFLOW_TAG One overflow for all channels on this stream.

Page 9

PicoQuant GmbH MultiHarp 150/160 Programming Reference

EVENT_TAGs represent events on the MultiHarp inputs. The tag value shall be interpreted as the tag value
in the T2 format. The encoding of the channel uses a concept called local channel. For the MultiHarp, given
the stream number S and the local channel L the input number I can be computed by I=(S-1)*8+L.

MARKER_TAGs represent events on the Marker inputs 1 to 4. If two Marker events are triggered at the same
time, they can be encoded in a single t2dm_rec.

OTHER_TAGs represent unused tag codes and miscellaneous status information, such as the start and end
points of measurements for all channels of the corresponding stream. The start and end tags can be used to
find the timetag start value at the beginning or end of a measurement.

OVERFLOW_TAGs represent an overflow similarly to how the T2 uses them. The overflow is only valid for
the channels of the corresponding stream. Only one overflow is encoded by a OVERFLOW_TAG.

An array of t2dm_rec types is denoted by the type t2dm_rec_vec and may have arbitrary dimensions. The
following table lists the fields, their meaning and their corresponding bit widths of the t2dm_rec type.

Field name Bit width Description

wr 1 Indicates whether the record is valid

ovfl 1 Indicates special record values

channel 6 Indicates channel and special record values

tag 17 Encodes the time tag of the event

3.3. T2/T3 Stream

The T2 and T3 modes transport data streams in a format that is described in the MultiHarp manual. Another
good starting point for understanding these formats are the PTU file demos installed together with the regular
MultiHarp software. The event records are encoded using the t2r_rec and t3r_rec correspondingly. A
record is only valid when wr is 1.

The streams may present valid data that does not fit any encoding outlined in the PTU file documentation. In
the interest of forward compatibility, a correct user logic implementation shall ignore such records.

3.4. Loopback Stream

The loopback stream offers an easy to use and high performance data channel from the user logic to the
USB interface of the MultiHarp. Data written to the loopback stream can be read on the connected PC using
the MHLib MH_ReadFiFo() function, just like any other T2/T3 measurement using the MultiHarp. Although
the data is transferred in this way, it should not be stored in a regular PTU file, as the user defined data for-
mat may not conform to the PTU file definition.

There are 4 settings for the loopback mode. The T2 and T3 loopback modes can be used for manipulating
and filtering of TTTR data streams. The user loopback mode offers the highest degree of flexibility, as arbi-
trary byte streams can be transferred to the host. For details on what modes are available see chapter 3.2.
For details on how to set up a loopback mode see chapter 4.

The user loopback stream interface is based on the AXI-4 Stream interface. For details on the AXI-4 stream
protocol see https://developer.arm.com/documentation/ihi0051/latest/. In the example code data beats are
grouped by the EFI into chunks of 128 Bytes. If a data beat has the LAST signal set, then the current group is
padded with 0xA5 Bytes until it is contains 128 Bytes. The user loopback stream is not available during that
time. The code inside the usr_application.vhd is just an example you can add custom protocols as per
specific needs.

3.5. Loopback Stream Status Signals

The loopback stream data that is transmitted from the external FPGA into the MultiHarp is aggregated there
into a FIFO. If the connected PC is not fast enough to consume data at the rate the external FPGA is produc-
ing it the FIFO buffer may overspill.

Page 10

https://developer.arm.com/documentation/ihi0051/latest/

PicoQuant GmbH MultiHarp 150/160 Programming Reference

In order to prevent this, the external logic can observe the LOOPBACK_FIFO_FILL_LEVEL signal. It shall be
interpreted as a 16 bit unsigned twos complement value. It represents the ratio of the current FIFO fill level
against the maximum FIFO fill level. A value of 0 indicates the array is empty and the value 2^16-1 indicates
the array is full.

The LOOPBACK_FIFO_FILL_LEVEL is only valid when the LOOPBACK_FIFO_NEW_FLAGS signal is ‘1’.

Note that the FIFO fill level is not reported to the external FPGA instantaneously, but instead represents the
fill ratio at the time it was measured in the MultiHarp. The user logic must therefore take into account the data
that is in flight between the external FPGA and the MultiHarp at the time of measurement. It is therefore
strongly recommended to leave a safety margin of at least 2% in the FIFO.

3.6. SYSCLK Domain Status Signals

The system_link_status_rec record encodes error and status of the 9 serial links. These signals are al-
ways valid and only presented to the user logic for debugging purposes. For details refer to the definition of
the record in the extfpga_lib_main package.

3.7. USER_REG Interface

The USER_REG interface is a 32 bit wide register interface for configuration purposes. It has an address
space for 231 words of 32 bits each.

For a write operation the EFI sets the USER_REG_ADDR and USER_REG_WDATA to the desired values and as-
serts USER_REG_WR. The address and data may be set ahead of time or on the same cycle as
USER_REG_WR. For a single write the USER_REG_ADDR may be asserted for more than one cycle. See the
following figure for a valid example write transaction:

For a read operation the EFI sets the USER_REG_ADDR to the desired value and asserts USER_REG_RD. The
address may be set ahead of time or on the same cycle as USER_REG_RD. The user logic must then set the
USER_REG_RDATA to the desired value and assert USER_RD_READY. The returned data can be set ahead of
time or on the same cycle as USER_RD_READY. For a single transaction the USER_RD_READY may only be
set for one cycle. The following figure shows a valid example read transaction:

If too much time passes between the start and the completion of transaction, then the host software will ter-
minate the transaction and raise an error. The user logic should therefore attempt to complete transactions
as fast as possible.

Page 11

PicoQuant GmbH MultiHarp 150/160 Programming Reference

3.8. I/O Signals

The EFI contains several signals that refer to physical BELs and pins in the FPGA. Those signals should be
passed through to the top level entity and constrained using XDC commands. The example project contains
the XDC commands for the boards in the file <package location>/gateware/hdl_src/constrs/
<prj_name>/constr_<prj_name>.xdc. For other FPGAs the correct commands will be different.

Page 12

PicoQuant GmbH MultiHarp 150/160 Programming Reference

4. Software Programming Guide
Five functions of the MHLib programming library are dedicated to the operation of the external FPGA inter-
face. Those functions can be used at any point after initialization of the MultiHarp. This chapter contains a
documentation for the C/C++ functions only.

int MH_ExtFPGAInitLink (int devidx, int linknumber, int on);

arguments: devidx: device index 0..7
linknumber: index 0..8 of the link to be initialized
on: 0 = off, 1 = EFI REAR, 2 = EFI SFP

return value: =0 success
<0 error

Note: Sets the state of a link to the external FPGA for a specific device. Using EFI REAR with the MultiHarp 160, the base unit
contains the links zero to two and every expansion unit adds two links. Using EFI SFP only link zero can be used.

int MH_ExtFPGAGetLinkStatus (int devidx, int linknumber, unsigned int* status);

arguments: devidx: device index 0..7
linknumber: index 0..8 of the link to be queried
status: pointer to unsigned int

return value: =0 success
<0 error

Note: Gets the status of a link to the external FPGA on a specific device. The MultiHarp 160 base unit contains the links zero to
two and every expansion unit adds two links. For details look at the SYSLINK_STATUS VHDL type.

int MH_ExtFPGASetMode (int devidx, int mode, int loopback);

arguments: devidx: device index 0..7
mode: stream mode code to be set, see mhdefin.h
loopback: loopback mode code to be set, see mhdefin.h

return value: =0 success
<0 error

Note: For details on the meaning of the mode and loopback values see chapter 3.1.

int MH_ExtFPGAResetStreamFifos (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: This function should typically be called after each call of the MH_Initialize() function. Calling this function is only required
when using the T2DM-Mode.

int MH_ExtFPGAUserCommand (int devidx, int write, unsigned int addr, unsigned int* data);

arguments: devidx: device index 0..7
write: 0 = read, 1 = write
addr: an address for the data in the external FPGA
data: pointer to location of data to write or to receive

return value: =0 success
<0 error

Note: Writes data to the user register at addr or reads the register contents from addr into data. For details see chapter 3.7.

Page 13

PicoQuant GmbH MultiHarp 150/160 Programming Reference

5. Glossary
AXI (Advanced eXtensible Interface):

A bus protocol.

DLL (Dynamic Link Library):

A shared library system used by Microsoft Windows.

EFI (External FPGA Interface):

The PicoQuant interface for connecting TCSPC electronics to external FPGAs.

EFI SFP

Front External FPGA Interface, this is used together with an SFP+ Module, provides T2/T3 data

EFI REAR

Rear External FPGA Interface, this provides all available data streams T2/T3/T2RAW

ELF (Executable and Linkable Format):

A file format for executables.

FIFO (First-In First-Out):

A type of memory queue.

FMC (FPGA Mezzanine Card):

An expansion port standard for FPGA development boards.

FPGA (Field-programmable gate array):

A type of semiconductor device that is reprogrammable.

FWHM (Full width at half maximum):

A characteristic of the measurement of a distribution.

GT (Gigabit transceiver)
A versatile high-speed interface for implementing various high-speed protocols.

IP (Intellectual Property):

In the context of FPGAs this refers to encapsulated pieces of digital logic used for development.

USB (Universal Serial Bus):

Page 14

PicoQuant GmbH MultiHarp 150/160 Programming Reference

A peripheral standard.

SFP (Small Form-factor Pluggable)

Modern transceiver standard for networks feature both optical and electrical signal paths, utilizing matching
transceiver modules.

TCSPC (Time-correlated single photon counting):

The measurement and analysis of arrival times of individual photons.

TTTR (Time-tagged time-resolved):

A method for streaming and storing the arrival times of individual photons in TCSPC measurements. Specific
file formats are T2, T2DM and T3.

T2DM (TTTR2 Direct Mode):

Dedicated TTTR format for low-latency high-throughput connections such as the EFI REAR. T2DM is con-
ceptionally related to T2 mode.

VHDL (Very High Speed Integrated Circuit Hardware Description Language):

A Hardware Description Language.

XDC (Xilinx Design Constraints):

A file format for describing the pin assignment and other I/O properties of Xilinx FPGAs.

Page 15

PicoQuant GmbH MultiHarp 150/160 Programming Reference

6. Legal Terms

6.1. Copyright

Copyright of this manual and on-line documentation belongs to PicoQuant GmbH. No parts of it may be
reproduced, translated, or transferred to third parties without written permission of PicoQuant

6.2. Trademarks

Other products and corporate names appearing in this manual may or may not be registered trademarks or
subject to copyrights of their respective owners. PicoQuant GmbH claims no rights to any such trademarks.
They are used here only for the purposes of identification or explanation and to the owner’s benefit, without
intent to infringe.

Page 16

PicoQuant GmbH MultiHarp 150/160 Programming Reference

This page was intentionally left blank

Page 17

PicoQuant GmbH MultiHarp 150/160 Programming Reference

Page 18

All information given here is reliable to our best knowledge. However, no responsibility is assumed for possible inaccuracies
or omissions. Specifications and external appearances are subject to change without notice.

PicoQuant GmbH
Rudower Chaussee 29 (IGZ)
12489 Berlin
Germany

P +49-(0)30-1208820-0
F +49-(0)30-1208820-90
info@picoquant.com
www.picoquant.com

